
Runtime Environment

DII COE I&RTS: Rev 3.0 January 1997 5-1

5. Runtime Environment

This chapter describes the software configuration for the COE runtime environment. All
software and data, excepting low-level components of the bootstrap COE, are packaged
as segments. A segment is a collection of one or more CSCIs (Computer Software
Configuration Items) most conveniently managed as a unit. Segments are constructed to
keep related CSCIs together so that functionality may be easily included or excluded.

There are six segment types corresponding to the different types of components that may
be added to a system:

1. COTS: A segment totally comprised of commercial off-the-shelf software.

2. Account Group: A segment that serves as a template for establishing a runtime

environment for individual operators.

3. Software: A collection of executables and static data that extend the base functionality

and environment established by an account group.

4. Data: A segment composed of a collection of data files for use by the system or by a

collection of segments.

5. Database1: A segment that is to be installed on a database server under the

management of the DBMS and ownership of the DBA. A Database segment can only
be installed on a database server and the installation tools enforce this. Note that a
database client application segment can be installed on any workstation and usually is a
software segment type.

6. Patch: A segment containing a correction to apply to another segment whether data

or software. The corrections entail replacing one or more files.

In addition, segments may have attached characteristics, called segment attributes, which
serve to further define and classify the segment. There are six segment attributes2:

1. Aggregate: A collection of segments grouped together and managed as an indivisible
unit.

1 Database server segments are supported only on Unix servers for this release. Database application
segments may be created for either the Unix or NT environment.
2 Subsection 5.5.33 discusses how to indicate segment attributes with the SegName descriptor. Segment
attributes are noted by the appropriate parameter within the $TYPE keyword of the SegName descriptor.
Aggregate and Parent attributes are combined into the single AGGREGATE parameter. The Child attribute
is indicated by the CHILD parameter. COE Component is subdivided into the COE CHILD and COE
PARENT parameters. Similarly, the Web attributed is subdivided into the WEB APP and WEB SERVER
parameters. Finally, the Generic attribute is indicated by the GENERIC parameter.

Runtime Environment

5- January 1997 DII COE I&RTS: Rev 3.05-2

2. Parent: A segment that is part of an aggregate, but is considered to be the “root”
segment. The parent segment name is the name presented to an operator as the name
of the aggregate. An aggregate can have only one parent segment.

3. Child: A segment that is part of an aggregate, but is subordinate to a single segment

designated as the parent. An aggregate can have multiple child segments.

4. COE Component: A segment that implements functionality contained within the

COE, as opposed to a mission-application segment.

5. Web: A segment that uses Web-based technology to create the application. A Web

segment is either a Web server, or a Web-application segment (e.g., a client
application). A user requires a Web browser to access Web-based segments.

6. Generic: A segment that is to be automatically added to all “usual” account groups

(see subsection 5.4.10 below). This feature allows a segment to participate in multiple
account groups without the need for the segment to explicitly name each account
group.

Note: The attributes listed here are often used in the vernacular as if
they are segment types (discussion of an aggregate segment, a
COE-component segment, a Web segment, etc.). Technically
such usage is incorrect because these are attributes and not types.
When discussing segments by attribute, it is implicitly understood
that there is an underlying segment type, usually software.

Segment installation is accomplished in a disciplined way through instructions contained in
files provided with each segment. These files are called segment descriptor files and are
contained in a special subdirectory, SegDescrip, called the segment descriptor
subdirectory. The segment descriptor files embody a technique that allows a segment to
“self-describe” itself. That is, the segment descriptor files contain pertinent information
describing the segment, such as the segment name and type. This information is used by
other software in the COE and other segments that need to access functionality contained
within the segment. But the descriptive information is also used by people to aid in the
integration process, to aid in security analysis of the segment, or in configuration
management. Installation tools process the segment descriptor files to create a carefully
controlled approach to adding/deleting segments to/from the system. The format and
contents of the segment descriptor files are the central topic of this chapter.

Principles contained in this chapter are fundamental to the successful operation of the
COE and achieving DII compliance is largely determined by how well developers apply
the details given in this chapter. Appendix B summarizes the compliance requirements
stated in this chapter into a series of checklists organized by Category 1 compliance levels.
Developers are required to adhere to the procedures described herein to ensure that
segments can be installed and removed correctly and that segments do not adversely
impact one another. Unless otherwise noted, all requirements apply to both Unix and NT.

Runtime Environment

DII COE I&RTS: Rev 3.0 January 1997 5-3

Note: In this chapter and throughout the I&RTS mention is made of
occasions when approval is required by a Chief Engineer. Unless
otherwise stated, this means the DII COE Chief Engineer for
COE-component segments and mission-application segments that
affect interoperability. All other references refer to the Chief
Engineer responsible for the mission-application segment (e.g.,
GCCS Chief Engineer, ECPN Chief Engineer). The Chief
Engineer is not necessarily a DISA engineer, and will not be for
the majority of the mission-application segments. Likewise, use of
the term SSA refers to the responsible SSA unless otherwise
qualified.

New and Obsolete Features

5- January 1997 DII COE I&RTS: Rev 3.05-4

5.1 New and Obsolete Features

This DII COE release includes a number of improvements over previous COE releases. A
list of the more significant improvements is provided here for developers who are already
familiar with the JMCIS or GCCS COEs, or a previous DII COE release.

The present release is backwards compatible with previous JMCIS, GCCS, and DII COE
releases. Segments presently in use do not require modification to work with the features
described here. However, certain features from previous JMCIS and GCCS COE releases
are now obsolete and support for them will eventually be phased out. Obsolete features
are listed in a subsection below.

All of the features from the previous I&RTS have been preserved. Segments which have
been migrated to any version of the DII COE do not require additional work to be
compatible with this issue of the I&RTS. Compliance-level requirements have not been
increased with this release, but the compliance criteria in Appendix B have been reworded
and reorganized for clarity.

Periodic modifications to the DII COE and the I&RTS are made for several reasons:

• to address non-Unix environments,
• to allow extension to other problem domains,
• to provide support for new and emerging technologies,
• to generalize the COE concept,
• to improve site installation and administration of segments,
• to simplify or clarify certain segment descriptor files,
• to further reduce integration problems,
• to meet emerging mission requirements, and
• to apply lessons learned.

5.1.1 New Features

This subsection is broken into two parts. The first summarizes DII COE features that were
not present in JMCIS or GCCS COE releases. This list is repeated from the previous
I&RTS version and its purpose is to assist developers migrating from those two
environments to the DII COE. The second summarizes new features in this release that
were not present in the previous I&RTS release. Its purpose is to serve as a handy
reference of new features for developers already using the DII COE.

Features Not in JMCIS or GCCS COE

• COE-component segments are defined and installed in a special COE directory.

• SegInfo contains most segment information instead of using individual segment

descriptor files.

New and Obsolete Features

DII COE I&RTS: Rev 3.0 January 1997 5-5

• Segment executables are stored in a bin subdirectory rather than a progs
subdirectory to conform to commercial practice.

• Library modules are stored in a lib subdirectory rather than a libs subdirectory to

conform to commercial practice.

• Segments may reserve space to allow room for growth.

• Segments may request space on multiple disk partitions.

• Segments may specify NFS3 mount points.

• Segments may request system reboot after installation.

• Segments may affect the user account creation/deletion process.

• Segments may perform cleanup operations during the MakeInstall process.

• Segments are automatically compressed by MakeInstall (this can be disabled).

• PostInstall and other installation-related scripts may prompt operators during

segment installation.

• COEServices is extended to include other system services.

• Icons and Menus are supported.

• Local and remote segments are supported.

• Character-based interfaces are supported.

• The COE contains a COTS license manager.

• Configuration definitions4 are supported.

3 NFS support is provided for the benefit of legacy systems. DFS is preferred, but few applications are
ready to take advantage of DFS. Moreover, some designers may elect not to use DCE in favor of other
distributed computing environments such as CORBA or DCOM/OLE. The I&RTS will be extended in a
future release to provide direct DFS support. Segment developers may not alter the Unix
/etc/exports file. This is set in the kernel COE or through COE-component segments created by
system designers to export only those directories actually required to be NFS-mounted.
4 Configuration Definitions were called variants in previous JMCIS/GCCS COE releases and in the
previous I&RTS. The concept is the same, but has been extended and refined in this release. See Chapter 2
for more information.

New and Obsolete Features

5- January 1997 DII COE I&RTS: Rev 3.05-6

• A Processes descriptor file is supported.

• #ifdef-style constructs are supported in segment descriptor files.

• The installation tools set Unix file permissions and owner.

• New tools and extensions are described in Appendix C.

• Segments may use a boolean “OR” to specify segment dependencies so that a

dependency can be fulfilled by one or more segments.

• Segments may request temporary disk space for use during the installation process;

such temporary disk space will be deleted when the installation is complete.

• A new segment type has been added to accommodate components that are to be

managed by the DBMS.

New Features in this I&RTS Release

• Database applications are supported through SHADE. Descriptor information is
provided in this chapter.

• The concept of data scope (local, global, segment, etc.) is extended to encompass

database scope (e.g., unique, shared, universal).

• The draft PC-based COE from the previous I&RTS release has been formalized and

incorporated as appropriate to this Chapter. It is further described in Chapter 6.
Several new descriptors and keywords have been added to support PC NT
applications.

• Support is provided to add NT registry entries (see the Registry segment
descriptor).

• Standard NT file extensions (e.g., .TXT, .EXE, and .BAT) are supported for

segment descriptor files.

• Web-based applications are supported and are described further in Chapter 7.

Descriptor information is provided in this chapter.

• Guidance and support for DCE applications is provided. DCE-based applications are

described further in Chapter 8. A new DCEDescrip descriptor and several new
keywords are provided to describe DCE servers.5

5 In this I&RTS release, DCE servers are available on Unix platforms only. DCE client applications may
be on Unix or NT platforms.

New and Obsolete Features

DII COE I&RTS: Rev 3.0 January 1997 5-7

• The $KEY keyword is added to enforce certain requests (such as installation with

“root” privileges) that require Chief Engineer approval.

• The location for shared libraries is now specified (i.e., in the segment’s bin

subdirectory).

• Child components in an aggregate may now have a conditional load attribute. This is

described more fully below, but it allows a child segment to be loaded only if it
represents a newer version than what is already on disk.

• The concept of a generic segment is added. A generic segment is automatically made a

member of every account group, except those which are character-interface-based.
The segment may also specify account groups that it is to be excluded from.

• Support is added for three new types of processes: RunOnce, Privileged, and Periodic.

Privileged is available for Unix only, but the other two are available for both Unix and
NT. RunOnce processes are executed the first time the system is rebooted, but not
thereafter. Privileged processes are those which require “root” permissions to execute.
Periodic processes are the Unix equivalent of cron processes, permitting a segment
process to be run at specified intervals.

• Support is added to allow site installers to temporarily install a segment to test it.

• Support is provided to allow site administrators to create application servers that

contain software for multiple platform types. Support is included for “dynamic
loading” of segments.

• Segments may add executables to run during the user profile creation/deletion just as
with the account creation/deletion process. Support is also added to allow executables
to be run when a profile switch is performed.

• The segment installer tool, COEInstaller, issues a warning to the operator
performing the installation if an attempt is made to load a segment that is an earlier
version of one that is already on the disk.

• The COEInstaller tool maintains a status log of segments as they are loaded and
provides the ability to print the status log. The status log may also include output from
scripts (such as PostInstall) that is normally sent to stdout or stderr.

• A $EQUIV keyword has been added to the SegName descriptor. In effect, this allows
a segment to be known by an alias.

New and Obsolete Features

5- January 1997 DII COE I&RTS: Rev 3.05-8

• The Help descriptor has been added as a placeholder for future expansion. Its
purpose is to identify “help files” within the segment and their format (Unix man page,
HTML, etc.).

5.1.2 Obsolete Features

The features listed below are being phased out because changes were required to extend
the DII COE to address the Joint community, to address problem domains other than
command and control, and to extend to non-Unix platforms. The previous release of the
I&RTS indicated most of these items as obsolete. They are collected here as a ready
reference. This release adds only one new requirement: usage of the $KEY keyword. This
keyword is used in instances where the I&RTS requires Chief Engineer authorization for
some requested feature, such as permission to create a COE-component segment. To
preserve backwards compatibility for existing features, VerifySeg only issues a
warning if the $KEY keyword is missing. An error is generated when the $KEY keyword
is missing for new features. Developers should begin using the $KEY keyword in all
appropriate places because a future release will issue errors instead of warnings.

Support is still provided for each of the obsolete items listed below, but documentation for
them has been removed from this release of the I&RTS. Segment developers and program
managers should upgrade6 to the latest DII COE to ensure future compatibility. Support
for the obsolete features may be removed from the next release. The tool VerifySeg
will issue warnings when run against old segments to identify obsolete features.

• The MACHINE environment variable is now obsolete. The MACHINE_OS and
MACHINE_CPU environment variables should be used instead. Segment developers
should not depend upon MACHINE being defined.

• Individual segment descriptor files are now obsolete. The SegInfo descriptor file

should be used instead. It is divided into sections which correspond to the earlier
individual descriptor files. Conversion to SegInfo is required for Level 8
compliance.

• Releases of the JMCIS and GCCS COEs allowed several path-related environment

variables to be defined in the environment extension file. This is discouraged in order
to reduce the size of the environment variable space, which is a scare system resource.
Level 8 Compliance limits segments to a single path-related environment variable.

• Subdirectories progs and libs are now obsolete. Subdirectories bin and lib

should be used in order to conform to conventional practice.

6 The obsolete features are primarily in the content and format of the descriptor files and should not
require any source code changes. The effort required to upgrade should be a matter of editing the segment
descriptor files and running VerifySeg. A tool, ConvertSeg, described in Appendix C is available to
automate the conversion to the extent possible.

New and Obsolete Features

DII COE I&RTS: Rev 3.0 January 1997 5-9

• The old format of the Data descriptor file is obsolete. The size required is now
specified in the Hardware descriptor instead of the Data descriptor. Level 8
compliance requires uses of the new format.

• Previous versions of the COE allowed DEINSTALL, PostInstall, and

PreInstall to run with root privileges. This capability is no longer the default. The
$ROOT keyword must be used instead and Chief Engineer approval is required to run
with root privileges.

• Previous releases of the COE allowed a $PATH keyword in the Menus and

ReqrdScripts descriptors. This is now obsolete since the I&RTS specifies the
location of where files must be located relative to the segment's home directory.

• Segment descriptors ModName and ModVerify have been replaced with SegName

and SegCheckSum respectively. The SegType descriptor file has also been
replaced by the SegName descriptor file.

• In earlier releases, the parent segment for a child had to be listed in the Requires

descriptor. This is no longer required because by virtue of naming the aggregate parent
in SegName, there is an implied dependency. Child segments use the $PARENT
keyword to explicitly name the aggregate parent. The parent uses the $CHILD
keyword to explicitly name the children in the aggregate.

• The $COMPONENT keyword is now obsolete and is replaced by the $CHILD

keyword.

• Previous COE releases automatically provided a system menu bar. Applications must

now use the Executive Manager APIs to explicitly request a system menu bar.

Disk Directory Layout

5- January 1997 DII COE I&RTS: Rev 3.05-10

5.2 Disk Directory Layout

This subsection describes the COE approach for a standardized disk directory structure
for all segments. A standardized approach is required to prevent two segments from
overwriting the same file, creating two different files with the same name, or similar issues
that frequently cause integration problems. Unfortunately, such problems are often not
discovered until the system is operational in the field.

In the COE approach, each segment is assigned its own unique, self-contained
subdirectory. This subdirectory is called the segment’s assigned directory or the
segment’s home directory. The segment’s assigned directory is established at segment
registration time. It obviously must be unique among all segments that are installed in an
operational system. A segment is not allowed to directly modify any file or resource it
doesn’t “own” - that is, outside its assigned directory. Files outside a segment’s assigned
directory are called community files. COE tools coordinate modification of all community
files at installation time, while APIs to the segments which own the data are used at
runtime.

Figure 5-1 shows the COE directory structure. The root-level directory for the COE is
/h. Underneath /h, disk space is organized into the following categories (note the close
parallel to segment types):

COTS segment descriptors for installed COTS products

AcctGrps templates for establishing a runtime environment context

COE component segments constituting the COE

data subdirectory for shared (local and global) data files

Web subdirectory for Web-application segments

Segments one or more subdirectories for mission-application or other segments

USERS operator home directories with operator-specific items such as
preferences

TOOLS collection of useful tools for the development environment

Web-application segments are collected into their own subdirectory to segregate them
from all other types of applications. This is to make it easier to identify and control them
from a site-administration7 perspective. The Web-server segment is a COE-component
segment and therefore is located under the COE subdirectory. Web-application segments
may or may not also be COE-component segments, but they are placed under the Web

7 Web servers and mission-application segments will likely be placed behind a firewall to administratively
restrict platforms that outside users can gain access to.

Disk Directory Layout

DII COE I&RTS: Rev 3.0 January 1997 5-11

subdirectory in either case. If they are also COE-component segments, the specialized
processing performed for all other COE-component segments is done as well. The
installation tools automatically place Web segments in their proper location.

Figure 5-1 does not show other important disk directories, such as the Unix /etc
directory. The /etc directory is one of a family of related directories which contain Unix
system files. Other COTS products may require specific directories as well, and there are
other important system directories that are specified to each operating system.

...

OS
Extensions

RTE
Templates

COE
Component
Segments

shared
data

Mission Apps
and

Other Segments

Operators

Developers

Web
Applications

h

USERSJCALSGSORTSdataCOEAcctGrpsCOTS TOOLSWeb

Figure 5-1: DII COE Directory Structure

Developers may not directly alter or create files outside of their assigned segment
directory. DII compliance mandates strict adherence to this directive, with the following
exceptions:

1. Temporary files may be placed in the operating system temporary8 directory. For Unix,
this is the directory pointed to by TMPDIR (typically /tmp). For NT, use the
applicable Windows API to locate the temporary directory. However, disk space is
limited so developers must use this temporary directory sparingly and shall delete
temporary files when an application is done.

2. Segments may place data files in the /h/data directory, and are required to do so

for shared data (see subsection 5.4.4 below).

8 For Unix, the COE deletes all files in the temporary directory when the system is rebooted. This does not
occur for NT system. Developers should make it a habit to delete all temporary files when they are
finished and not rely upon the operating environment to delete them. This will ease porting problems and
is a matter of good programming practice.

Disk Directory Layout

5- January 1997 DII COE I&RTS: Rev 3.05-12

3. Operator-specific data files shall be placed in subdirectories underneath /h/USERS
(see subsection 5.2.2 below).

4. Files may be added to the /h/TOOLS directory. This is a community directory for

tools useful in the development process. Segments shall not place any files in this
directory which are required at runtime since this directory is not installed at
operational sites. This directory is described in subsection 5.2.3.

5. Segments may request that the COE tools modify community files during the

installation process.

6. Segments may issue a request to modify a file to the segment which “owns” the file.

This shall be done through use of, and only through use of, published APIs.

As software is loaded onto the system, the /h disk partition may eventually run out of
disk space. The COE installation software will automatically create a symbolic link9 to
preserve the logical structure shown in Figure 5-1, and delete the link when segments are
removed. Hence, Figure 5-1 represents a logical view, not a physical view, of file and
directory locations. Due to the potential need to relocate segments at installation time
based on available disk space, DII-compliant segments must meet the following
requirements:

• Segments shall use relative pathnames instead of absolute pathnames.

• Segments which use symbolic links to point to files contained within the segment shall

use relative pathnames for the link.

• Segments which use symbolic links to community files may use absolute pathnames as

long as (a) the segment can determine the community file’s location at install time and
(b) the segment can resolve linking to a community file which may itself be a symbolic
link.

• (Unix) Segments which add an environment variable to the account group’s global

runtime environment for locating files within the segment shall use a single “home”
environment variable. Environment variables of this nature are normally required only
when the segment files are to be accessible by other segments. Addition of the “home”
environment variable is done by the segment installer through use of extension files
and must not be done directly by the segment.

To illustrate the last requirement, consider a segment that provides a continuous readout
of time-until-impact for a missile. Assume the segment’s assigned directory is
MissleTDA and it’s segment prefix is MSLE. The ReqrdScripts descriptor file (see
below) is used to add the following to the account group’s .cshrc file:

9 Symbolic links are called shortcuts in NT.

Disk Directory Layout

DII COE I&RTS: Rev 3.0 January 1997 5-13

setenv MSLE_HOME /h/MissleTDA

MSLE_HOME is called the segment’s home environment variable. Static data within the
segment can be referenced by $MSLE_HOME/data while executables may be referenced
by $MSLE_HOME/bin. This technique of using relative pathnames means that segments
can be easily relocated at development, integration, or installation time by modifying a
single environment variable.

The last requirement stated above does not apply to environment variables defined for use
purely within the software development environment. The COE requires that the runtime
environment be separated from the development environment. This is typically done by
separating environment variables and other settings into physically separate files. The
development environment is not present during runtime for the operational system.

Also carefully note that the last requirement stated above applies only to the account
group’s global runtime environment, not a local runtime environment. When a segment
executable is launched, it inherits the environment established by the account group
template. It may then add to its local runtime environment through techniques equivalent
to the C putenv()function.

The time-to-impact example illustrates additional COE requirements regarding definition
of a home environment variable.

• A segment home environment variable shall point to the segment’s assigned directory,
not a lower level subdirectory (e.g., point to the directory /h/MissleTDA and not
to the directory /h/MissleTDA/Scripts).

• (Unix) A segment home environment variable, if added to the global environment,

shall be added through an environment extension file (see ReqrdScripts below).

• If a segment home environment variable is required, it shall be named

segprefix_HOME, where segprefix is the segment prefix. Segments which use the
same segment prefix must ensure that only one segment defines a home environment
variable. This requirement assures that home environment variables are uniquely
named between segments.

• Segments shall not define a global environment variable that can be derived from an

already-defined environment variable. For example,

 setenv MSL_DATA $MSL_HOME/data

 is redundant and is therefore not allowed because the expression $MSL_HOME/data

can be used wherever $MSL_DATA can be used.

Disk Directory Layout

5- January 1997 DII COE I&RTS: Rev 3.05-14

• Segments shall not use the “~” character (or NT equivalent) to specify relative
pathnames in the runtime environment, whether to define a home environment variable
or any other environment variable.

Unix allows statements of the form

source ~/Scripts/.cshrc.tst

in .cshrc, .login, and similar scripts. The “~” character is substituted at run time
with the name of the home login directory (as defined in the /etc/passwd file).
Suppose this statement were contained in a .cshrc file and, to prevent making duplicate
copies and managing updates to this file, another segment wishes to use the Unix source
command to include this .cshrc file in its own environment. Any segment wishing to
source the example .cshrc file must duplicate the same disk directory path structure
(e.g., must have a Scripts subdirectory underneath the home login directory) and must
have a file called .cshrc.tst underneath the Scripts subdirectory. This approach is
problematic in the runtime environment because the login home directory is different for
every operator, and leads to difficulties in sharing environment settings.

Note: Developers should minimize the use of environment variables
whenever possible. The amount of memory the operating system
makes available to store environment variables is limited and is
therefore a scare system resource. Also, developers should bear in
mind that environment variables with shorter names require less
memory to store than environment variables with longer names.

5.2.1 Segment Subdirectories

DII compliance mandates specific subdirectories and files underneath a segment directory.
These are shown in Figure 5-2 for a general segment. The precise subdirectories and files
required depend upon the segment type. For example, a Scripts subdirectory is
required for account group segments. The Scripts subdirectory on a Unix system will
normally contain, as a minimum, .cshrc and .login scripts. These serve as a template
for establishing a basic runtime environment. For software segments, the Scripts
subdirectory contains environment extension files.

Some of the subdirectories shown in Figure 5-2 are required only for segment submission
and are not delivered to an operational site. Runtime subdirectories normally required are
as follows:

data subdirectory for static data items, such as menu items or help files,
that are unique to the segment but will be the same for all users on
all workstations

bin executable programs for the segment

Disk Directory Layout

DII COE I&RTS: Rev 3.0 January 1997 5-15

Scripts directory containing script files (This is usually not required for NT
platforms but, if required, the directory contains “batch” files.)

SegDescrip directory containing segment descriptor files.

* Required for segments with published APIs
+ Required for segment submission
1 For Database segments only
2 Recommended location for source code during development,

Required location for source code delivered to DISA.

h

IntgNotes
VSOutput

Seg

ScriptsSegDescrip bindata *man *include *lib +Integ

TestSuite

1install 1DBS_files 2src

Icons Menus fonts app-defaultskeytab Help

Figure 5-2: Segment Directory Structure

The descriptor directory SegDescrip is always required for every segment. Its contents
are defined in later subsections. Segment developers may use arbitrary disk file structures
during the development phase, but segments shall conform to the structure shown prior to
submitting a segment to DISA. It is a violation of the COE to use a different subdirectory
name to fulfill the same purpose as any subdirectory shown as a required subdirectory, or
to use a different runtime directory structure than that shown in Figure 5-2.

For example, the subdirectory src is a recommended directory for the location of source
code during software development. Developers are free to use this name, or any other
structure convenient for their development practices. They must, however, use this
directory name for source code delivered to the DISA SSA. bin is a required
subdirectory and shall not be used for any purpose other than that stated in the I&RTS.

The distinction between the Scripts subdirectory and the bin subdirectory is subtle.
Files in the Scripts subdirectory are used to establish attributes of the runtime
environment. Scripts are used here in the sense of traditional Unix, X Windows, or Motif
files (.cshrc, .login, etc.) that are usually referred to only during the login process or
in the establishment of a separate runtime session. Files of this nature are located in the

Disk Directory Layout

5- January 1997 DII COE I&RTS: Rev 3.05-16

Scripts subdirectory. Executable files may be created as a result of compiling a
program or may be written as a shell. Files of this nature implement executable features of
the segment and are located in the bin subdirectory.

Subdirectories install and DBS_files are only used for database segments. Their
use is described below in subsection 5.4.5

Subdirectories underneath data depend upon whether or not the segment has menu or
icon files, uses DCE (subdirectory keytab), or needs additional fonts or app-defaults.
During segment installation (for Unix platforms) special processing is performed on files
within the app-defaults and fonts subdirectories. See subsection 5.4.4 below for
more details.

The remaining subdirectories shown in Figure 5-2, except for src, are required in order
to submit a segment to DISA as follows:

include subdirectory containing C/C++ header files or Ada package definition
files for public APIs

lib subdirectory containing object code libraries for public APIs

man subdirectory containing Unix “man” pages for public APIs

Integ subdirectory containing items required in the integration process

Segments which do not contain public APIs need not submit include, lib, or man
subdirectories. For those segments with public APIs, private APIs are not allowed in the
include subdirectory, nor are private libraries allowed in the lib subdirectory.

The Integ subdirectory serves as a convenient repository for information that needs to
be communicated from the developer to the integrator. The file VSOutput is required
for all segments submitted. The subdirectory TestSuite is required for all segments
which submit public APIs and is to contain source code for a program(s) which exercises
all APIs submitted. The file IntgNotes is required for all segments submitted and
contains a brief description of why the segment is being submitted (new features, bug
fixes, etc.). It also contains any special instructions that need to be communicated to the
integrator for proper segment integration and installation.

5.2.2 USERS Subdirectories

The COE establishes individual operator login accounts and provides a separate
subdirectory on the disk for storing operator-specific data items. The structure underneath
this directory is created and managed automatically as accounts are added and deleted by
the Security Administrator software. Developers who require access to any file maintained
here (last profile selected, location of operator preferences files, etc.) shall use COE-
provided APIs to access them and not rely upon a particular directory or file structure.

Disk Directory Layout

DII COE I&RTS: Rev 3.0 January 1997 5-17

All users with valid accounts will have a subdirectory underneath /h/USERS. The
subdirectory name will have the same name as the login account name. As shown in Figure
5-3, operator accounts may be global or local in scope. A local account is workstation-
specific, whereas global accounts are available from any workstation on the LAN.

USERS

local global

Oper1
Oper2

Oper3

OperA
OperB

OperC

h

datadata

PrefsPrefs

Figure 5-3: Operator Directory Structure

The subdirectory Prefs underneath the operator's data directory is used to store
segment-specific operator preferences. DII compliance requires that segments store all
operator preference data here. A segment is responsible for creating its own subdirectory
(with the same name as the segment’s assigned directory) and any required files when the
segment first references the preferences data. The exact pathname for the Prefs
subdirectory will change each time a different operator logs in, thus segment software
shall use functions from the Preferences Toolkit APIs to retrieve the correct pathname for
the currently active operator account.

Account group segments define the environment variables USER_HOME and USER_DATA
to point to the correct operator directories. For the example in Figure 5-3, the following
assignments would be made when the user whose login account name is OperA logs in:

USER_HOME = /h/USERS/global/OperA
USER_DATA = /h/USERS/global/OperA/data

Note that USER_HOME is not defined to be /h/USERS/global/OperA/Scripts
which is the login home directory.

Segments, such as the Executive Manager, may need to reference menu and icon files for
the operator’s currently-defined profile. However, the directory location for these files is

Disk Directory Layout

5- January 1997 DII COE I&RTS: Rev 3.05-18

profile-dependent and will change during a login session if the operator changes profiles.
Segments must use functions contained in the Preferences Toolkit APIs to determine the
current profile. The environment variable USER_PROFILE is set by the account group
segment during login, but segments must use APIs from the Preferences Toolkit to access
files or directories related to individual operators, or to determine the current user profile.

DII compliance requires adherence to the following:

• Segments shall create subdirectories as needed under the operator’s Prefs
subdirectory for storing operator-specific data.

• Segments must work in an environment in which accounts are created and deleted.

This requires that a segment create and initialize missing operator-specific data files.

• Account group segments shall set the environment variables USER_HOME,

USER_DATA, and USER_PROFILE. (See footnote below. Account groups must still
set USER_PROFILE in the interim to support legacy usage.) No other segment shall
set or alter these environment variables.

• Segments shall determine the operator’s directory and profile exclusively through the

Preferences Toolkit APIs or the environment variables USER_HOME, USER_DATA,
and USER_PROFILE.10

5.2.3 Developer Subdirectories

Software for the runtime environment is obtained by loading the desired mission-
application segments and the required COE components. But the development
environment is provided separately as a Developer’s Toolkit because it is not delivered to,
nor required at, an operational site. The Developer’s Toolkit includes object code libraries,
header files which define the public APIs, and various tools. By convention, tools are
loaded underneath the /h/TOOLS subdirectory shown in Figure 5-1. This serves as a
convenient directory for software contributed by the community for general development
use.

5.2.4 Test Installation Subdirectories

The COE provides the ability for sites to temporarily install a segment on a workstation to
test it before putting it on other workstations on the LAN. This is accomplished by the
COETestInstall tool, while removal of the test segment is accomplished by the
COETestRemove tool (see Appendix C). These tools create temporary directories for
storing the test segment and, if the segment already exists, COETestInstall moves
the old segment to a safe location so that it can be restored by COETestRemove once

10 USER_PROFILE is preserved for backwards compatibility only. The COE allows there to be multiple
active profiles so that an environment variable may not be the most appropriate way to determine the
current user profile. Developers must not directly access this environment variable because its use may be
phased out in a future release.

Disk Directory Layout

DII COE I&RTS: Rev 3.0 January 1997 5-19

the test is completed. Developers do not need to do anything special to their segment to
enable this capability. It is handled automatically by the tools.

5.2.5 Application-Server Subdirectories

To assist site administrators, the COE provides support for creating application servers.11

This is done by the tools COECreateAS, COEConnectAS, and COERemoveAS (see
Appendix C). The COECreateAS tool allows segments to be loaded onto a workstation
that is to be configured as an application server. The application server may contain
segments for mixed hardware types (e.g., HP, Solaris, DEC, IBM, SGI). Figure 5-4 shows
the directory structure maintained on the application server.

The tool COERemoveAS removes segments from an application sever. The tool
COEConnectAS connects a client workstation to an application sever. It also allows
“dynamic” loading of segments as explained in Appendix C.

The COE does not support installation of multiple versions on the application server, for
the same platform and operating system version. This could otherwise lead to problems if
two different versions of a segment for the same platform type were executed at the same
time. Temporary testing of a new segment version must be performed using the
COETestInstall and COETestRemove tools described in subsection 5.2.4

Developers do not need to do anything special to their segments to enable the application-
server capability. It is handled automatically by the tools.

h

AppsSvr

Seg1dataCOEAcctGrpsCOTS ...Seg2

Platform4
Platform3

Platform2
Platform1

Figure 5-4: Applications Server

11 Application servers are supported for Unix platforms only in this I&RTS release.

Segment Prefixes and Reserved Symbols

5- January 1997 DII COE I&RTS: Rev 3.05-20

5.3 Segment Prefixes and Reserved Symbols

Each segment is assigned a unique subdirectory underneath /h called the segment’s
assigned directory. The assigned directory serves to uniquely identify each segment, but it
is too cumbersome for use in naming public symbols. Therefore, each segment is also
assigned a 1-6 character alphanumeric string called the segment prefix. The segment prefix
is used for naming environment variables and things such as public APIs and public
libraries where naming conflicts with other segments must be avoided. All segments shall
prefix their environment variables with segprefix_ where segprefix is the segment’s
assigned prefix. For example, the Security Administrator account group segment is
assigned the segment prefix SSO. All environment variables for this segment are therefore
prefixed with the string “SSO_”.

The segment prefix is also used to uniquely name executables and shared libraries. All
COE-component segments shall use the segment prefix to name executables and it is
strongly recommended that all segments follow the same convention. For example, a
proper executable for the Security Administrator account group is SSOSetClassif. A
properly named shared library would be SSOSampleLib.lib . This approach simplifies
the task of determining the files that go with each segment and reduces the probability of
naming conflicts.

Note: Use the segment prefix inside application code in situations where
it is important to distinguish one segment from another. For
example, when audit information is written to the security audit
log, the segment prefix is also written to the audit log to allow
determination of which application module generated the audited
event. The same advice applies to all audit logs, including those
maintained by the operating system or a DBMS.

It is sometimes convenient for segments to share the same segment prefix. This is true for
aggregate segments or for segments produced by the same contractor. The COE allows
segments to share the same segment prefix; however, the burden for avoiding naming
conflicts is placed on the segment developer.

Note: This means that segment prefixes are not guaranteed to be unique
and therefore cannot be used to uniquely identify a segment. Each
segment shall have a uniquely assigned directory and segment
name. Therefore, the name or directory in combination can be
used to uniquely identify a segment. There are situations where it
is more convenient to specify a segment’s assigned directory
rather than its name, such as in COEFindSeg, because the
directory name is typically shorter than the segment name and this
fact can be useful in speeding up character string comparisons in
segment searches. Furthermore, because the segment directory
will not have embedded blanks but the segment name may, the
segment name will not necessarily be the same as the assigned
directory name.

Segment Prefixes and Reserved Symbols

DII COE I&RTS: Rev 3.0 January 1997 5-21

The segment prefixes shown in Table 5-1 below are reserved.

Segment Prefix Usage
CBIF Character-Based I/F account group segment
CDE Common Desktop Environment segment
COE Common Operating Environment segment
DBA Database Administrator account group segment
DCE Distributed computing environment segment
DII Defense Information Infrastructure segment
ECEDI Electronic Commerce/Electronic Data Interchange

segment
ECPN Electronic Commerce Processing Node segment
EM Executive Manager segment
GCCS Global Command and Control System segment
GCSS Global Command Support System segment
INFRMX Informix COTS segment
JCALS Joint Computer-Aided Acquisition and Logistics

Support segment
JMCIS Joint Maritime Command Information System

segment
JMTK Joint Mapping Toolkit segment
MOTIF Motif
NIPS Navy NIPS segment
NT Generic NT segment
ORACLE Oracle COTS segment
OSS Navy OSS segment
SA System Administrator account group segment
SCO SCO-Unix segment
SSO Security Administrator account group segment
SYBASE Sybase COTS segment
TIMS Navy TIMS segment
UB Navy Unified Build segment
UNIX Unix operating system
USER prefix for operator-specific items
WIN generic Windows segment
WIN95 Windows 95 segment
WINNT Windows NT segment for 80x86 platforms
XWIN X Windows

Table 5-1: Reserved Segment Prefixes

The COE sets five environment variables that must not be confused with the USER prefix
or the segment home environment variable.

Segment Prefixes and Reserved Symbols

5- January 1997 DII COE I&RTS: Rev 3.05-22

• The HOME environment variable is set by the operating system to be the login
directory; that is, the login directory as contained in the Unix /etc/passwd file.
This will normally point to a Scripts subdirectory while the segment “home”
environment variable (segprefix_HOME) is one level up from HOME.

• The USER environment variable is set by the operating system to be the login account

name and does not refer to a directory as does the USER prefix. Thus, USER_HOME
will be /h/USERS/$USER.

• The environment variables LOG_NAME, LOGNAME, and LOGIN_NAME are equivalent

to the USER environment variable12, but are not always present on every system.

The COE also includes a number of predefined environment variables that are required by
Unix, NT, X Windows, and other COTS software. These environment variables are either
set automatically by the operating system or they must be set by an account group
segment. Other segments shall not alter these environment variables except as permitted
by environment extension files (e.g., extending the path environment variable).

Table 5-2 below lists various important environment variables that is set by the applicable
account group, the parent COE-component segment, or the COE installation tools.

The COE sets environment variables MACHINE_CPU and MACHINE_OS to define the
hardware and operating system being used. This allows scripts and descriptors to perform
operations that are dependent on the hardware or operating system. Table 5-313 below lists
the possible values set by the COE which either may be used as constants in #ifdef
constructs within descriptor files or as possible values for the appropriate environment
variable (e.g., MACHINE_CPU).

Note that the environment variables (e.g., MACHINE_CPU) will have one and only one
value, but several constants may be defined for use within the descriptor files. For
example, if the hardware platform is an HP715 running HP-UX 9.01, the MACHINE_CPU
environment variable will be set to HP715, MACHINE_OS will be set to HPUX, while the
constants HP, HP715, HPUX will be defined for use in descriptors.

12 USER is preserved for backwards compatibility with legacy pre-POSIX systems. LOGNAME is the proper
POSIX equivalent.
13 This list of constants will be updated as new platforms are supported. Refer to the DII COE Release
Notes and Version Description documents for details as new platforms are supported.

Segment Prefixes and Reserved Symbols

DII COE I&RTS: Rev 3.0 January 1997 5-23

Environment Variable Usage
COE_SYS_NAME string containing system name (e.g., “GCCS”)
+COE_TMPSPACE location of temporary space
*DATA_DIR /h/data
DISPLAY current display surface (Unix only)
HOME user’s login directory
+INSTALL_DIR absolute pathname to where segment was installed
*LD_LIBRARY_PATH default location of shared X and Motif libraries

(Unix only)
*LOGNAME user’s login account name
*LOG_NAME user’s login account name
*LOGIN_NAME user’s login account name
*MACHINE_CPU CPU type derived from uname -m
*MACHINE_OS Operating system derived from uname -s -r
path list of paths to search to find an executable
SHELL shell used (e.g., /bin/csh) (Unix only)
+SYSTEM_ROOT absolute pathname to where Windows is installed

(applicable to PC-based COE only)
TERM terminal type (Unix only)
*TMPDIR location of the system-defined temporary directory
*TZ time zone information (Unix only)
USER user’s login account name
USER_DATA user’s data directory under /h/USERS/local

or /h/USERS/global
USER_HOME user’s home directory under /h/USERS/local

or /h/USERS/global
USER_PROFILE user’s current profile under

/h/USERS/local/Profiles or
/h/USERS/global/Profiles

*XAPPLRESDIR /h/data/app-defaults (Unix only)
*XENVIRONMENT /h/data/app-defaults/COEBaseEnv

(Unix only)
*XFONTSDIR /h/data/fonts (Unix only)

Legend: * Environment variables set by the parent COE-component
segment.

+ Environment variables set by the COE installation tools.
These are defined only at installation time.

All remaining environment variables are set by the applicable
account group segment.

Table 5-2: COE-Related Environment Variables

Segment Prefixes and Reserved Symbols

5- January 1997 DII COE I&RTS: Rev 3.05-24

MACHINE_CPU Environment Variable
Constant Platforms for Which Defined
HP700 HP 700 series workstations
HP712 HP712 workstations
HP715 HP 715 workstations
HP750 HP 750 workstations
HP755 HP 755 workstations
PC386 Intel 80386 workstations
PC486 Intel 80486 workstations
PENTIUM Intel Pentium workstations
SPARC Sun Sparc workstations
SUN4 Sun 4 workstations

MACHINE_OS Environment Variable
Constant Platforms for Which Defined
HPUX all HP-UX workstations
NT all NT workstations
SOL all Solaris workstations
WIN95 all Windows 95 platforms

Miscellaneous Constants
Constant Platform for Which Defined
HP all HP platforms, regardless of OS
PC all 80x86 platforms, regardless of OS
SPARC all Sun Sparc workstations, regardless of OS

Table 5-3: Platform and Operating System Constants

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 January 1997 5-25

5.4 Segment Types and Attributes

Segment types and attributes were briefly introduced at the beginning of this chapter. The
present subsection describes segment types and attributes in more detail. Segments are the
cornerstone of the COE approach, and proper determination of their type and associated
attributes determines how the COE handles them. Developers have considerable freedom
in building segments; however, there are some important considerations regarding them.

• Creation of an account group segment requires prior approval by the Chief Engineer.
Most account groups are predefined by the COE itself to establish DII-compliant
runtime environments. System designers will typically add an operator account group
that establishes the basic runtime environment for their system. Other developers will
not normally create account group segments.

• Creation of a COE-component segment requires prior approval by the DII COE Chief

Engineer.

• All COTS products shall be packaged as individual COTS segments, unless approved

by the DII COE Chief Engineer. This requirement is mandated to make it easier to
handle COTS licenses, and to ensure that a single version of a COTS product is in use.
Dependencies on COTS product versions must be identified and coordinated with
DISA to ensure that the proper version is supported by the COE.

• Segments shall not modify any file that lies outside the segment’s directory.

Community files may be modified only through public APIs or through requests made
to the COE installation tools.

Segment types are identified by the $TYPE keyword in the SegName descriptor.
Segment attributes are also specified in the $TYPE keyword by the presence of an
optional attribute parameter. See subsection 5.5.33 below for details.

5.4.1 COTS Segment Types

The COTS segment type is used to describe the installation of COTS products. It is
preferable to structure a COTS product as a software segment, if at all possible, because it
provides more control over the installation and placement of the COTS product.
However, this is sometimes not possible because where COTS products will be loaded,
what environment extensions are required, etc. are often very vendor-specific.

The COE must retain segment information about all segments, including COTS products.
The segment descriptor information for all COTS segments is located underneath the
directory /h/COTS as shown in Figure 5-5. COTS software is not necessarily actually
stored in the directory /h/COTS. Frequently only the segment descriptor information is
stored there because the actual location of COTS products is often spread across several
subdirectories (such as /usr, /usr/lib/X11, and /etc).

Segment Types and Attributes

5- January 1997 DII COE I&RTS: Rev 3.05-26

Using Unix as the example, Figure 5-5 shows the segment descriptor information for the
operating system (UNIX), the X Windows environment (XWindows), the Motif window
manager and libraries (Motif), and the Common Desktop Environment software (CDE).
These four subdirectories, along with the actual COTS software, are loaded with the
kernel COE. The example in Figure 5-5 also shows that the DCE COTS product has been
installed.

COTS

h

UNIX XWindows Motif CDEDCE

SegDescrip SegDescripSegDescrip SegDescripSegDescrip

Figure 5-5: COTS Directory Structure

COTS products sometimes have very specific requirements as to the location of files
within the product. The general approach to such segments is to create a temporary
segment structure in which to store the COTS product, copy the COTS files to their
required location during installation, and then copy the segment descriptor information to
/h/COTS. It is the responsibility of the PostInstall script (see below) to copy the
COTS files to their appropriate directories and to perform any other required initialization
steps. The installation software handles moving the segment descriptor information to the
standard location, /h/COTS.

For example, assume a COTS product called SampleCots is to be installed which
requires loading a series of files into /etc (files f1, f2, and f3), /usr/local (files
f4 and f5), and /usr/lib (files f6, f7, f8, and f9). A segment directory structure
can be set up in whatever manner is most convenient. Figure 5-6 shows one possible
solution. The installation software will load the segment SampleCots wherever there is
room on the disk and will set the environment variable INSTALL_DIR to the absolute
pathname to where SampleCots was loaded. The PostInstall script for this
example must recursively copy the subdirectories etc and usr from INSTALL_DIR to
/etc and /usr. The installation software will copy the segment descriptor information
to /h/COTS/SampleCots and then delete all files underneath INSTALL_DIR.

As an alternative, the COE allows a segment to specify exactly where it must be loaded.
This is done with the $HOME_DIR directive described in subsection 5.5 below. This
reduces the need to copy files from one directory to another, and eliminates the temporary
disk space required during installation (e.g., to temporarily store the segment when it is
read from tape, then copy it to its new location, then delete the temporary location).

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 January 1997 5-27

SampleCots

etc usr SegDescrip

liblocal

f6
f7
f8
f9

f4
f5

f1
f2
f3

Figure 5-6: Example COTS Segment Structure

The segment descriptor file FilesList (see subsection 5.5.14) is used to document
where a COTS product was installed. The FilesList descriptor for this example is

$PATH:/etc
$FILES
f1
f2
f3
$PATH:/usr
$FILES
local/f4
local/f5
lib/f6
lib/f7
lib/f8
lib/f9

To summarize the COTS segment type:

• COTS products should be installed as a software segment type if possible.

• The COTS segment’s PostInstall script is responsible for copying files to their

required location. The PostInstall script must ensure that enough space exists.

• The installation software places the segment descriptor information underneath

/h/COTS/SegDir where SegDir is the segment directory name chosen for the
temporary segment structure (SampleCots in the example above).

• The installation software automatically deletes the temporary segment structure after

installation is complete.

Segment Types and Attributes

5- January 1997 DII COE I&RTS: Rev 3.05-28

• COTS segments shall document what files are loaded and their location in the

FilesList segment descriptor file.

Note: Developers should normally not include the vendor name in the
segment name because this makes the segment vendor-specific.
Other segments which then depend upon the COTS product are
affected because they then become vendor-specific as well. For
example, a segment name such as “DCE” is preferable to
“Vendor A DCE” because segments may specify a dependency on
a segment whose name is “DCE” rather than “Vendor A DCE.”
This is especially the case when the COTS product is the
implementation of an industry standard. However, it is sometimes
advisable to include the vendor name because the product truly is
vendor-proprietary. This is typically the case with an RDBMS.

5.4.2 Account Group Segment Types

An account group segment is a template for establishing a basic runtime environment
context that other segments may extend in a controlled fashion. An account group
segment determines

• the processes to launch,
• the order in which to launch processes, and
• the required environment script files (.cshrc, .login, etc.).

Account groups may also contain executables and data in the subdirectories identified in
Figure 5-2.

The COE provides several predefined account groups. They are located underneath
/h/AcctGrps shown in Figure 5-1. Important predefined account groups include the
following:

CharIF account group for character-based interfaces

DBAdm account group for database administrators

SecAdm account group for security administrators

SysAdm account group for system administrators

In addition to these account groups, COE-based system designers will generally create
their own account group for normal operator accounts (GCCS for the Global Command
and Control System, GCSS for the Global Command Support System, ECPN for the
Electronic Commerce Processing Node system, etc.). They will include CharIF if the

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 January 1997 5-29

system supports a character-based interface and may include other account groups to suit
system mission requirements.

Figure 5-7 shows how the Unix System Administrator account group is structured. It
demonstrates what account groups are for and how they are used in building a COE-based
system.

bin Subdirectory

Account groups utilize COE executables, located underneath /h/COE/bin, but will
usually include additional account group specific programs. These are located in the
account group’s bin subdirectory. DII compliance requires that executables within this
subdirectory use the segment prefix to avoid potential naming conflicts with other
executables.

AcctGrps

h

Scripts bin dataSegDescrip

.chsrc

.cshrc.dev

.cshrc.SA

.login
RunSA

Menus Icons Help

Figure 5-7: Example Account Group Directory Structure

data Subdirectory

Segment data specific to the System Administrator account group is located in the data
subdirectory. The Menus subdirectory contains menu files that have menu entries for all
options available from the basic System Administrator application. The segment
installation software may modify files contained here to add other menu options. Account
group menu files are used as templates from which profiles are created by including or
excluding desired menu items and execution permissions. The Icons subdirectory is
analogous, but defines icons for use by the desktop for launching applications.

Help files are located underneath the data/Help subdirectory and identified through the
Help segment descriptor. Refer to subsection 5.5.16 below for more details on this
segment descriptor.

Segment Types and Attributes

5- January 1997 DII COE I&RTS: Rev 3.05-30

Scripts Subdirectory

A Unix account group segment will usually contain at least the following two scripts to
establish the runtime environment:

.cshrc define environment variables

.login define terminal characteristics

Precise contents of these files is application-dependent. Other segments may be loaded to
extend the environment established by the account group. This is done through
environment extension files. DII-compliant account group segments shall name
environment extension files in the form

scriptname.segprefix

where scriptname is the environment file to be extended and segprefix is the segment
prefix. For the example shown in Figure 5-7, the environment extension files are:

.cshrc.SA extensions to the .cshrc file

.login.SA extensions to the .login file

Extension of the .login file is seldom required.

Environment extension files permit COE installation software to provide segment-specific
environment modifications. A segment uses the descriptor file ReqrdScripts (see
below) to indicate which environment file to extend and the installation tools modify the
proper file within the account group segment.

For example, suppose the installation tools have loaded a segment underneath /h/SAOpt
and the SAOpt segment has an environment extension file named .cshrc.SAOpt in the
segment’s Scripts subdirectory. The installation tools will include the new environment
settings by inserting the following statements in the account group’s file .cshrc.SA:

if (-e /h/SAOpt/Scripts/.cshrc.SAOpt) then
source /h/SAOpt/Scripts/.cshrc.SAOpt

endif

The installation tools automatically remove these statements from .cshrc.SA if the
segment SAOpt is deleted.

Account group segment developer’s shall ensure that environment extension files are
included and accounted for in the appropriate account group segment’s scripts. For
example, the .cshrc file shown in Figure 5-7 includes the following statements

if (-e $SA_HOME/Scripts/.cshrc.SA) then
source $SA_HOME/Scripts/.cshrc.SA

endif

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 January 1997 5-31

to account for .cshrc extensions. Also note that the source command shall be of the
form

source $SA_HOME/Scripts/.cshrc.SA

rather than

source $USER_HOME/Scripts/.cshrc.SA

The COE-mandated form ensures a single copy of the environment extension file, updated
and maintained by the installation software.

The file .cshrc.dev shown in Figure 5-7 relates to the software development
environment. It is not a required file, but is described here as an example of how the
development environment can be accommodated, yet kept separate from the runtime
environment. In the example shown, developer preferences such as alias commands are
included in .cshrc.dev. These preferences must not be included as part of the runtime
environment. A technique such as

if ($?DEVELOPER) then
source $SA_HOME/Scripts/.cshrc.dev

endif

within the .cshrc file is required to achieve separation of the development environment
from the runtime environment. This technique will not work for certain files, such as
.mwmrc, because they do not support conditional statements.

Account groups must include the base environment established by the COE.
Subsection 5.4.8 below describes the COE-component segments in more detail. The
.cshrc file in Figure 5-7 includes the base COE environment with the statements

if (-e /h/COE/Scripts/.cshrc.COE) then
source /h/COE/Scripts/.cshrc.COE

endif

The remaining files in Figure 5-7 contain similar statements to include other COE
environmental settings.

Account groups must also provide a script or program which launches the application.
This is the file named RunSA shown in Figure 5-7. DII compliance requires this file to be
located underneath the Scripts subdirectory.14

To summarize compliance requirements for account groups:

14 This program is required for backwards compatibility and as an aid to integrators and testers. It may be
phased out in a future release because the program is not necessarily used in the operational system,
depending upon the characteristics of the system desktop.

Segment Types and Attributes

5- January 1997 DII COE I&RTS: Rev 3.05-32

• Account group segments shall provide environment extension files of the form
scriptpname.segprefix, where scriptname is the name of the script which sets
the environment, and segprefix is the account group’s segment prefix. This must be
done for any files that other segments may extend (e.g., .cshrc.SA for the SysAdm
account group).

• Account group executables shall use the segment prefix to avoid naming conflicts.

• Account group segments shall not include the developer environment as part of the

runtime environment.

• Account group segments shall provide a single program or script with the name

Runsegprefix, where segprefix is the segment prefix, to initiate execution of the
account group’s application. This executable shall be located in the account group
segment’s Scripts subdirectory.

• Account group segments shall automatically include environment settings established

in /h/COE/Scripts.

• Segment developers shall not modify account group files except through use of the

installation software.

• Segment developers shall not override environmental settings established by the

account group. Segments may use environment extension files to expand the
environmental settings.

5.4.3 Software Segment Types

Software segments add functionality to one or more account groups. The account
group(s) to which the software segment applies is called the affected account group(s).
The directory structure for a software segment was presented in Figure 5-2.

Software segments frequently need to extend the runtime environment, add new menus
and icons to the desktop, and include new executables in the search path. Environment
extension files are located underneath the software segment’s Scripts subdirectory.
The ReqrdScripts segment descriptor file (see below) indicates which environment
files are to be extended.

Software segments provide additional menu and icon files underneath the segment’s
data/Menus and data/Icons subdirectories respectively. The segment descriptor
files Menus and Icons (see below) are used to describe where the new items are to
appear on the desktop. At installation time, the menu and icon files from all contributing
segments are added to the affected account group. This then serves as a master template

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 January 1997 5-33

of all possible functions provided within the account group. Profiles are then created by
selectively including or excluding functions within this master template.

Unix segments that provide executables must ensure that the bin subdirectory is included
in the search path. This is accomplished by including a statement of the following form in a
.cshrc extension file:

set path =($path $segprefix_HOME/bin)

The segment shall append its bin subdirectory, and only its bin subdirectory, at the end
of the search path, not the beginning. An implied aspect of this requirement is that
segments cannot depend upon a specific loading sequence, other than that a segment will
not be loaded until after all segments it depends upon are loaded. A specific requirement is
that segments shall not insert the current working directory (i.e., “.”) into the search path.

DII compliance requires the following:

• Segments shall not make separate copies of executables from other segments, the
operating system, or other COTS products.

• Segments shall use environment extension files as necessary to extend the environment

established by the affected account group.

• Segments shall use the segment prefix to name objects whenever conflicts may arise

with other segments.

• Segments shall be completely self-contained. Dependencies on, or conflicts with, other

segments shall be specified through the appropriate Requires or Conflicts
segment descriptor files.

• Segments shall not insert the current working directory into the search path for
executables.

• (Unix) Segments shall include their bin subdirectory at the end of the search path, not

at the beginning nor in the middle.

5.4.4 Data Segment Types

Data files are most often created explicitly at runtime by a segment or loaded as part of the
segment itself. However, the ability to load data as a separate segment is useful when there
is classified data, optional data, large amounts of data, or data that may not be releasable
to all communities. The COE supports five categories of data grouped according to data
scope, how the data is accessed, and where the data is located:

Segment Types and Attributes

5- January 1997 DII COE I&RTS: Rev 3.05-34

Global Data in this category means that every workstation, every application,
and every operator on the LAN accesses and uses exactly the same
data. Global data is made available through NFS mount points or
some similar technique. Examples of global data include the track
database and message logs. Global data is located in subdirectories
underneath /h/data/global.

Database This category is similar to global data but is used to provide data fill
for a database segment. Examples of this kind of data include
intelligence databases, JOPES data, and TPFDD data. Data is loaded
into the appropriate objects previously created by a database segment
in a database server. Database segments are discussed further in
subsection 5.4.5 below. Data segments for databases are usually
removed after successfully loading data into the database server.

Local Local data is limited in scope to an individual workstation. All
workstation users and applications access the same data, but the data
may (and frequently will) differ from one workstation to another.
Examples include overlays and briefing slides, although the COE
provides techniques for exporting these to other workstations. Local
data is located in subdirectories underneath /h/data/local.

Segment Segment data is local to a workstation, but is managed and accessed
by a single software segment. This data is located under the
segment’s data subdirectory (e.g., SegDir/data where SegDir is
the assigned directory) and is typically static data used for segment
initialization.

Operator Data in this category is specific to an operator and is the most limited
in scope. Typical examples include preferences for map colors,
location of various windows, and font size. Operator data is stored in
a data subdirectory underneath /h/USERS created for the operator
when the operator login account is created, as described in
subsection 5.2.2.

There are some important considerations with respect to these data categories:

• Data is not necessarily available to an operator or process even if the data scope would
otherwise permit it. Discretionary access controls limit access based upon the security
policy of the system.

• In some cases, data that could be global is replicated on every workstation to improve

system performance. For example, World Vector Shoreline data is identical for
everyone on the LAN, and hence meets the criteria for the global data category.
However, for efficiency, this data may be replicated on each workstation which
requires maps and is thus considered local.

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 January 1997 5-35

• Distinction is made between segment data and local data because it affects where the

data is stored on the disk. Local data for all segments is stored in a single place to
make it easier for doing data backups. Because segment data is normally static, it does
not usually need to be archived and remains with the segment.

Segment data created at runtime or loaded as part of the segment does not require any
special consideration by the COE. The remainder of this subsection will deal with the COE
requirements for local and global data, and then present an example of how a data segment
is structured for local, global, and segment scope.

global and local Subdirectories

Figure 5-8 shows the directory structure for global and local data. The COE runtime
environment sets the environment variable DATA_DIR to point to /h/data. Segments
shall use this environment variable to reference global or local data. The segment which
owns the local or global data is responsible for creating and managing its data
subdirectories underneath $DATA_DIR/local and $DATA_DIR/global. Assuming
the segment’s assigned directory is SegDir, the segment shall create a subdirectory of the
form SegDir/data under $DATA_DIR/local and/or $DATA_DIR/global as
appropriate.

* NT only

data

h

local global app-defaultsfonts

COE UB JCALS

data

...

data data

GSORTS JCALS ...

datadata

*Registry

Figure 5-8: Data Directory Structure

For example, suppose a segment that does ASW planning is located underneath /h/ASW
and it will create both global and local data. Then the ASW segment must create the
subdirectory $DATA_DIR/local/ASW/data for local data and the subdirectory
$DATA_DIR/global/ASW/data for global data.

Segment Types and Attributes

5- January 1997 DII COE I&RTS: Rev 3.05-36

The COE mandates that local and global data be structured in this fashion for the
following reasons:

• Centralizing data makes it easier to archive and restore. A simple data archive/restore
utility can be created without needing to know how many segments are loaded in the
system.

• Separating data from software makes it simple to load the software without

destructively overwriting existing data. This is especially important as segments are
upgraded.

• Collecting all global data under a single directory reduces the number of NFS-type

mount points and improves overall network performance.

• Organizing data into a standard structure simplifies training and simplifies

determination of what data is loaded in the system.

fonts and app-defaults Subdirectories (Unix)

Figure 5-8 shows two additional subdirectories, fonts and app-defaults. These are
applicable to Unix only. The COE sets environment variables XFONTSDIR and
XAPPLRESDIR to point to these subdirectories. Their purpose is to contain additional
fonts (such as NTDS symbology) or application resource files that are not provided by the
standard X/Motif distribution. It is a violation of the COE for a segment to overwrite or
add files to the standard X/Motif distribution.

During installation, the installation tools look for subdirectories data/fonts and
data/app-defaults underneath the segment’s directory. Files contained within these
subdirectories must use the segment prefix to guarantee unique names. The installation
tools creates a symbolic link underneath the directory $DATA_DIR/fonts to every file
in the segment’s data/fonts subdirectory and removes the links when the segment is
deinstalled. Similarly, links are created for files underneath the segment’s
data/app-defaults subdirectory.

Creating a data segment requires additional considerations. A segment structure is created
for the data and the installation tools logically insert the data underneath $DATA_DIR for
global and local scope, but underneath the parent segment for segment data. This is best
described through use of an example.

Assume a mine countermeasures decision aid has an assigned directory of MineTDA.
Assume that a separate data segment is to contain parametric data on floating, proximity,
and land mines for the decision aid. Figure 5-9 shows the appropriate directory structure
for the data segment. Further assume that when installed, the decision aid is located
underneath /h/MineTDA. Consider how the installation tools handle the mine data
segment for global, local, and segment scope.

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 January 1997 5-37

MinesData

SegDescripdata

Floating Proximity Land

h

Figure 5-9: Example Data Segment Structure

Global Scope Example

The Data descriptor file (see below) describes the data scope. For a global data segment,
the installation tools will load the mine data underneath the directory
$DATA_DIR/global/MinesData. If there is insufficient space to load the segment
underneath $DATA_DIR/global, the install tools will report an error and abort. The
mine TDA can thus reference global proximity-mine data as being underneath the
directory $DATA_DIR/global/MinesData/data/Proximity .

Local Scope Example

For a local data segment, the installation tools will load the mine data on the first available
disk partition. The installation tools will then create a symbolic link from
$DATA_DIR/local/MinesData/data to wherever the data segment was actually
loaded. That is, if the data segment is loaded underneath /home2/MineData, then the
symbolic link will point to the directory /home2/MineData/data . The mine TDA
can still reference local proximity mine data as being underneath the directory
$DATA_DIR/local/MinesData/data/Proximity .

Segment Scope Example

For segment scope data, the installation tools will load the mine data on the first available
disk partition. A symbolic link is then created from the directory
/h/MineTDA/data/MinesData/data to wherever the data segment was actually
loaded. Proximity data can thus be referenced as being underneath the directory
$HOME_DIR/data/MinesData/data/Proximity .

It should now be clear why the COE requires that segments which dynamically create
global or local data do so underneath a directory of the form SegDir/data, where
SegDir is the name of the segment’s assigned directory. This creates a uniform technique
for locating files whether they are created directly by a segment or loaded as part of a data
segment.

Segment Types and Attributes

5- January 1997 DII COE I&RTS: Rev 3.05-38

In summary, DII compliance mandates that:

• Segments shall create a data subdirectory underneath $DATA_DIR for global and
local data if they own global or local data. The subdirectory created shall be
SegDir/data where SegDir is the name of the segment’s assigned directory.

• The parent COE-component segment shall set the environment variable DATA_DIR to

point to /h/data.

• Segments shall use the environment variable DATA_DIR to reference data underneath

/h/data.

• Segments are responsible for creating the segment’s data subdirectories underneath

/h/data.

• Segments are responsible for handling the case in which a data file is not present or is

corrupted.

• (Unix) The parent COE-component segment will set environment variables

XFONTSDIR and XAPPLRESDIR to point to $DATA_DIR/fonts and
$DATA_DIR/app-defaults respectively.

• (Unix) Segments shall place fonts that need to be accessible via XFONTSDIR in the

segment’s SegDir/data/fonts subdirectory. Files in this subdirectory shall be
named using the segment prefix.

• (Unix) Segments shall place application resource files that need to be accessible via

XAPPLRESDIR in the segment’s data/app-defaults subdirectory. Files in this
subdirectory shall be named using the segment prefix.

5.4.5 Database Segment Types

The database segment type is similar in concept to the data segment type, except that the
data within a database segment type is managed by a DBMS. Data within a data segment
type is typically organized as a “flat file” and is typically managed by the operating
system’s file system.

As explained in Chapter 2, a database segment has scope, which is and indication of how
widely the data is shared, not of where the data is located, as is the case with the data
segment type already described. This scope is indicated in the Database segment
descriptor discussed in subsection 5.5.9. Data within a database segment type may be:

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 January 1997 5-39

Unique This type of database segment indicates that the data is used by only
one application, or is under the configuration control of the segment
sponsor. Unique data represents no sharing between segments.

Shared This type of database segment indicates that the associated data is
used by multiple mission-application segments or is managed across
multiple database segments. Data is shared, but typically only within
one mission domain (e.g., logistics, financial, command and control).

Universal Data in this category represents the most extreme form of
“shareability.” These database segments represent widespread usage
across mission domains, application segments, and require centralized
configuration management.

A database segment contains everything that is to be installed on the database server under
the management of the DBMS and the ownership of the DBA. It contains the scripts to
create a component database and any utilities provided by the developers for the DBA’s
use in installing and filling that particular database. These scripts must include those for
granting and revoking database roles. The only applications permitted in a database
segment are those that support its installation and data fill or that extend DBMS services
for the DBA. Database segments may only be installed on a database server.

When a database segment is installed it must first lay down any scripts, data files, etc. that
will be used to create the database. These scripts are then executed by PostInstall to
create the component database. They must first allocate storage to hold the database and
create one or more database accounts to own that database. They then can create the
database within the storage just allocated and fill it with data. Finally, roles are created to
manage access and the roles are given the appropriate privileges.

Developers cannot provide data files for the DBMS as part of the segment. Database files
must be created using the DBMS vendor’s utilities (e.g. Oracle’s SQL*DBA CREATE
TABLESPACE command) to be correctly incorporated in the DBMS instance.

Figure 5-10 is the same as Figure 5-2 except that it has been shaded to highlight the
directories which are used only for database segments, and directories which are not
required at runtime have been removed. Seg is the segment’s assigned directory. It is
unique and, for a database segment, it must be the same as the name of the database
owner account for the segment’s data objects.

Segment Types and Attributes

5- January 1997 DII COE I&RTS: Rev 3.05-40

Scripts Subdirectory

The Scripts subdirectory shall contain any segment-specific scripts needed to set the
environment for the database installation. This includes environment variables for all
directory paths that are used by the installation scripts. Note that this directory is used as a
place to store installation-related environmental scripts. As with the development
environment, scripts and environmental settings which are used only for installation must
be kept separate from those used by the runtime environment.

SegDescrip Subdirectory

The SegDescrip subdirectory contains the descriptor files necessary to install the
database segment. Certain information specific to database segments must be incorporated
in the SegInfo file. The Database descriptor is used to identify information such as
object dependencies that are within the database and therefore cannot be evaluated
without the use of the DBMS. See subsection 5.5.9 for the associated keywords for this
segment descriptor.

The PreInstall descriptor file should prompt the installer to provide the password for
the DBMS’ database administrator account. The password prompt must be implemented
via the COEPromptPasswd API (see Appendix C) provided by the COE Services. The
DBA password entered is used later by the scripts that perform the installation of the
database segment.

The PostInstall descriptor file is used to set up the installation environment, start the
RDBMS if necessary, and invoke the scripts that perform the installation of the database
segment.

For database segments, the ReleaseNotes descriptor should show how applications,
operating system groups, and database roles are associated. Developers should also
provide the database schema, including its dependencies. In addition to any narrative
information in this file, developers should include comments on their schema, data objects,
and data elements as part of their database build.

h

Seg

ScriptsSegDescrip bindata install DBS_files

Figure 5-10: Database Segment Structure

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 January 1997 5-41

The Requires descriptor must identify the required RDBMS and version. It must also
identify all dependencies on other database segments.

As with data segments, database segments have a scope associated with them. The scope
is specified in the Database segment descriptor, as explained below in subsection 5.5.9.

install Subdirectory

The install subdirectory contains the scripts to install and then create the database
segment. It includes all of the database definition language (DDL) scripts that create the
database objects for the segment. There are two sets of DDL scripts in this directory. The
first set allocates storage for the database, creates the database owner, and defines the
roles associated with the database segment. It must be executed by a DBA. The second set
creates all database objects (tables, views, indexes, sequences, constraints, triggers, etc.)
that make up the database. This set must be executed by the database owner.

The naming conventions to be used for database definition scripts and the structure of
those scripts are discussed in Chapter 4.

data Subdirectory

The data subdirectory contains any data files used to load the database. Data fill may
also be provided in a separate data segment if developers wish or need to keep the fill
separate.

Several methods for loading data, depending on data size, are discussed in
subsection 5.8.3.

bin Subdirectory

The bin subdirectory contains any scripts or other executables used to load data from the
data files into the database. It may also contain any applications that support unique
database administration requirements for that database segment.

DBS_files Subdirectory

The DBS_files subdirectory contains the DBMS-controlled data files that make up the
storage for the database. This directory is owned by the DBMS, not the segment. The data
files are created during the installation of the segment, normally in the PostInstall
process. Directory ownership must be transferred to the DBMS before the data files are
created. Note that this does not allow developers to stipulate disk architecture.

5.4.6 Patch Segment Types

The COE supports the ability to install field patches on an installed software base. A patch
segment permits the replacement of one or more individual files, including those of the

Segment Types and Attributes

5- January 1997 DII COE I&RTS: Rev 3.05-42

operating system. It does not refer to overwriting a portion of a file, as is sometimes done
to patch a section of binary code.

Patches are created in a segment whose directory name is the directory name of the
affected segment followed by a “.”, followed by the letter “P”, followed by the patch
number. Figure 5-11 shows an example patch segment directory structure for applying
patch 5 to an ASW segment. The subdirectory SegDescrip is required, but the
remaining subdirectories are patch-dependent. The example illustrates a situation in which
scripts, executables, and data files are to be updated by installation of a single patch
segment.

Scripts bin dataSegDescrip

ASW.P5

h

Figure 5-11: Example Patch Directory Structure

The installation software loads patches underneath the affected segment in a subdirectory
called Patches. Figure 5-12 shows the result of loading patch 5 from Figure 5-11. This
approach makes it easy to find and identify what patches have been applied to a segment.
It also makes it easy for the installation software to automatically remove patches when a
segment is replaced by a later update. If there is insufficient room to physically load the
patch underneath the Patches subdirectory, the patch is loaded on the first available
disk partition. A symbolic link is then created to preserve the logical structure shown. Also
note that when installed, the resulting subdirectory name of the patch for this example is
P5, not ASW.P5.

As patches are installed and removed, the descriptor file Installed in the segment
descriptor directory for the affected segment is updated to reflect what patches are
installed and removed, the date and time, the installer’s name, and the workstation from
which the work was done.

When a patch is installed, it is the patch segment’s responsibility to perform whatever
operations are necessary to replace files. In the example shown, the PostInstall script
must copy files from Scripts, bin, and data as required to update files in the existing
ASW segment.

To facilitate patch removal, the PostInstall program may create compressed copies
of files before they are modified and put them underneath the patch subdirectory (e.g., the
ASW/Patches/P5 subdirectory in this example). In this way, a DEINSTALL descriptor
simply needs to copy the files from the patch subdirectory to their original place and

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 January 1997 5-43

decompress them to restore the system to the pre-patch state. If the files being replaced
are large, this may require too much disk space to store the original files. In such cases,
the patch segment should be designated as a permanent patch and not make copies. A
patch segment is considered to be permanent if the patch segment does not include a
DEINSTALL descriptor.

Scripts bin dataSegDescrip

ASW

h

P5

Scripts Patches SegDescrip

Figure 5-12: Example Installed Patch

The COE installation software assumes that higher numbered patches must be removed
before a lower numbered patch can be removed. For example, patch 2 cannot be removed
until patch 5 is removed. However, if patch 5 cannot be removed - because there is no
DEINSTALL descriptor for patch 5 - patches 1 and 2 cannot be removed either. The only
way to remove them is to remove the entire segment.

DII compliance requires that:

• Patch segments shall be named SegDir.Pnumber where SegDir is the assigned
directory name for the segment to be patched, and number is a sequential patch
number.

• Patch segments shall perform the necessary operations to replace files through the

PostInstall script.

• Permanent patch segments shall be designated by the absence of a DEINSTALL script.

Patch segments can also be used to make updates to a database segment prior to the
release of a new database segment that incorporates the patch. The patch segment
structure will be the same as the database segment being patched, and the patch name
follows the same conventions as for any other patch segment.

Segment Types and Attributes

5- January 1997 DII COE I&RTS: Rev 3.05-44

Any objects, scripts, etc. that are being updated will be in the same location under the
patch segment directory as the corresponding original is under the database segment
directory. PostInstall will be used to backup the original and copy the new file to the
database segment directory. The patch segment will have the same owner as the database
segment being patched.

Any changes to executables provided with the patch will be implemented in the same
manner as patches to other software segments. Any changes to the database provided with
the segment will require an analysis to determine application segment dependencies.
Changes to the database must be coordinated with application segment developers.

If the patch segment is making any changes to the database objects, its developers are
responsible for preserving the information those objects currently contain, together with
restoring any permissions that have been granted on the objects. This usually requires
extracting and saving the records from the objects being modified, making the schema
changes, and then reloading their data. That portion of the patch segment must be
implemented in a manner that allows it to be restarted or re-executed without data loss in
the event of system or media failure during the patch installation.

5.4.7 Aggregate, Parent, and Child Attributes

It is sometimes convenient for a collection of segments to be treated as an indivisible unit.
The aggregate attribute provides this capability and the collection of segments are called
an aggregate segment. One, and only one, segment is designated as the parent segment
and the remaining segments are designated as children. Parent and child segments are
designated as members of an aggregate in the SegName descriptor file. The child segment
must list its parent segment, while the parent segment must list each child in the aggregate.
See subsection 5.5 below for the segment descriptor information required to do this. Each
segment within the aggregate is packaged according to its segment type as described in
preceding subsections.

The parent segment plays a special role in the aggregate. During installation with the
segment installer, only the parent segment is “seen” by the operator. Child components are
not displayed as selectable items, but are automatically loaded with the parent. Therefore,
the segment name and release notes associated with the parent segment should be carefully
chosen to be properly descriptive of the aggregate.

The parent segment is the first segment loaded from the aggregate. Child segments are
loaded next in the order listed by the parent segment. Because of this, child segments may
specify a dependency on the parent, but shall not specify dependencies upon one another.

In some situations, a child segment in an aggregate should be loaded conditionally. That is,
the child should only be loaded if it is not already on disk, or only if it is a later version. An
example of this situation is if a collection of segments created by a single developer must
use the same executable. One approach would be to create the common executable and
put it into its own separate segment. Then all the remaining segments would need to state
a dependency upon it. An alternative approach, supported here, is to package the common

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 January 1997 5-45

executable as a child segment that is to be conditionally loaded and placed in an aggregate
with each segment that needs it. The conditional load capability is specified by the
$LOADCOND keyword in the child segment’s SegName descriptor (see subsection 5.5.33
below).

The COE requires that each segment include a Security segment descriptor file. This
file is used primarily as a documentation aid and is used by the installer tool to indicate
which segments are classified at what level. The security level of the parent segment must
dominate that of the child segments. For example, if a child segment has a SECRET
classification, then the parent segment must have a SECRET or higher classification. The
segment developer must ensure that each segment in the aggregate is compatible for the
hardware platform. VerifySeg will check for this condition and reject an aggregate
with incompatible hardware platforms specified.

Disk space required is specified by each individual segment, not by the aggregate parent.
The COE installation tools may load parent and child segments on different disk partitions,
depending upon space available at install time. During installation, the space reported to
the installer takes into account whether or not the aggregate includes a conditional load
child, and whether or not the segment is already on disk. That is, the installer tool reports
the additional space required on the disk to load the selected segment(s).

DII compliance requires:

• One and only segment in the aggregate shall be designated as the parent segment.

• Child segments may specify a dependency on the parent, but shall not specify

dependencies upon one another.

• The security level of the parent segment shall dominate the security level of all child

segments.

• Segments within an aggregate shall be consistent with regard to the hardware platform

specified.

• Segments shall individually specify their own disk space requirements.

5.4.8 COE-Component Attribute

Authorized segments may specify the attribute of being a COE-component segment. COE-
component segments are similar to aggregate segments in that one segment serves the role
of a parent segment and all others are children to that parent. The parent segment is
similar to an account group segment which is affected by a collection of child component
segments. However, there are important differences between COE-component segments
and aggregate segments, and between the parent COE-component segment and account
groups.

Segment Types and Attributes

5- January 1997 DII COE I&RTS: Rev 3.05-46

• At installation time, a segment identified as a COE component must have an
authorization key15 (see the $KEY keyword below) specified or else the segment will
be rejected.

• Exactly one segment is designated as the parent COE component for the entire system.

This is the segment whose directory is /h/COE.

• Child COE-component segments are not loaded unless they are required. That is, a

child COE-component segment will not be loaded unless there is another segment
which expresses a dependency upon it.

• COE-component segments are organized into a very specific structure.

• The parent COE-component segment does not set up a runtime environment. It sets

up a baseline environment which is inherited by all account groups.

Figure 5-13 shows the directory structure for COE-component segments. Since COE
components form the foundation for the entire system, they are collected together in a
single place and are validated more rigorously during segment development, integration,
and installation. Special processing, as explained below, is performed on the COE
components because of their unique position within the architecture.

The SegDescrip subdirectory, required for all segments, underneath /h/COE refers to
the collection of COE components as a whole. Segments designated as child COE
components are loaded in the subdirectory /h/COE/Comp. Each child COE-component
segment has its own SegDescrip, bin, Scripts, and data subdirectory as
appropriate. If insufficient space exists to load the COE component directly under
/h/COE/Comp, a symbolic link is created to where the segment was actually loaded.

Environment files underneath /h/COE/Scripts are included by every account group
so that they are automatically inherited by every segment. The file .cshrc.COE sets the
path environment variable so that /h/COE/bin is first in the search path before any
other segments. Environment extensions for child COE components are handled
differently than environment extensions for other segments. As child COE-component
segments are installed, environment extension files located underneath the child COE
component’s Scripts subdirectory are textually inserted directly into the appropriate
file underneath /h/COE/Scripts. This insertion is performed automatically by the
installation tools. This is done to avoid the runtime overhead of executing several
source statements to pick up child segment extensions.

15 To preserve backwards compatibility, segments which are already authorized as COE-component
segments are not required to use the $KEY keyword for this I&RTS release. However, they are required to
migrate to this approach. In the interim, a legacy segment identified as a COE-component segment which
does not use the $KEY keyword is compared against a table containing the names of authorized COE-
component segments. If it does not match, the segment is rejected. All new COE-component segments
must use the $KEY keyword.

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 January 1997 5-47

Child COE-component segments shall not alter the path environment variable. It is not
necessary to do so because as child COE components are loaded, the installation tools
create a symbolic link underneath /h/COE/bin to where the executables were actually
loaded. This is done so that the search path contains only one entry for the COE,
regardless of the number of actual segments comprising the installed COE. This approach
mandates that all COE-component segments use the segment prefix to name executables.
VerifySeg will issue a warning for COE-component segments that do not meet this
requirement, but in a future release it will strictly fail such a component.

EM UB ...

COE

h

Scripts bin data SegDescrip Comp

EM DCEUB CDE ...

.chsrc.COE

.login.COE

Figure 5-13: COE-Component Segments Directory Structure

Symbolic links are also created underneath /h/COE/data to point to the child COE
component’s data subdirectory. The installation tools automatically delete these
symbolic links when a COE-component segment is deinstalled.

To summarize DII compliance requirements:

• COE components shall be authorized by the DII COE Chief Engineer. They will be
issued an authorization key that the developer shall specify in the segment with the
$KEY keyword.

• Child COE components shall not alter the path environment variable.

• COE components shall use the segment prefix to name all executables.

• Child COE components shall use the segment prefix to name all public symbols

contained in files within the segment’s Scripts subdirectory.

Segment Types and Attributes

5- January 1997 DII COE I&RTS: Rev 3.05-48

5.4.9 Web Attribute

Segment types that have the Web attribute are either Web servers or Web-application
segments (e.g., Web clients). By definition, Web servers are also COE-component
segments, so they have that implied attribute as well. Web applications may or may not be
COE components, and so must indicate explicitly whether or not they are. This is
described in subsection 5.5.33 below.

Web applications can only be installed on a platform that already has a Web server loaded
on it. Therefore Web applications must be designed so that they can access other COE
services that may be located on another platform, possibly even behind a firewall. This
allows sites to isolate the main COE-based system from the Web server by firewalls or
other security-related techniques.

Other than specifying the Web attribute, no additional segment descriptors are presently
required beyond those identified for all other segments.

5.4.10 Generic Attribute

The Generic attribute is provided to allow a segment to indicate that it should be
automatically made a member of all “regular” account groups. This means that the
segment, unless it indicates otherwise, will be made a participant of all account groups
except those which are character-interface-based (e.g., CharIF) or accessed through
remote execution account groups such as RemoteX.

This capability is provided for two reasons. First, some segments should be made a
member of virtually every account group. An example is a Web browser which is set up to
provide access to HTML help pages. Such a segment should be a member of the
following:

• the System Admin account group
• the Security Admin account group
• the Database Admin account group
• the operator account group (e.g., GCCS, ECPN).

It is convenient that this happen automatically without the need for the segment to
explicitly list every account group it is to be a member of. Such segments do not need to
express any affected account group in the SegName descriptor.

Second, some segments developed for one system may be generally applicable to other
mission systems, yet this may not have been realized when the segment was created. Using
the Web browser example, if it is packaged for GCCS and it states GCCS is the affected
account group, the segment’s SegName descriptor will need to be modified to use it for a
different system such as ECPN or GCSS. Declaring the segment to have the generic
attribute avoids this problem.

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 January 1997 5-49

There are some special points to note about segments which declare the generic attribute:

• The segment is automatically added to every account group except CharIF and
RemoteX.

• Site administrators can establish user profiles to deny an operator access to the generic

segment, even if it is a member of an account group.

• The generic segment is only stored on the disk once, regardless of how many account

groups it is made a member of.

• Generic segments may exclude account groups by listing the groups to exclude with

the $EXCLUDE keyword in the SegName descriptor.

• The generic attribute may be combined with other segment attributes.

Subsection 5.5.33 states which attributes may be combined.

5.4.11 Segment Dependencies

Segments specify dependencies upon one another through the Requires descriptor, and,
for database segments with database dependencies, the Database descriptor described
below. However, the COE does not allow circular dependencies. That is, a situation where
Seg A depends upon Seg B, Seg B depends upon Seg C, and Seg C depends upon Seg A
is strictly forbidden.

Components of an aggregate may have dependencies upon other components within the
same aggregate and such dependencies could lead to the circular situation just described.
But since components of an aggregate are always loaded together as a unit, this does not
pose a problem. Child components of an aggregate must not specify dependencies upon
one another in the Requires file, even if they do indeed have such dependencies.
Likewise, the parent segment must not specify a dependency on children within the
aggregate. An aggregate of database segments cannot have circular database dependencies
among the segments or there will be no valid database creation order.

Segment Descriptors

5- January 1997 DII COE I&RTS: Rev 3.05-50

5.5 Segment Descriptors

This section details the contents of the segment descriptor files. These files are the key to
providing seamless and coordinated systems integration across all segments. Adherence to
the format described here is required for all segments to ensure DII compliance. This
enables automatic verification and installation of segments.

The software tool VerifySeg must be run during the development phase to ensure that
segments properly use segment descriptor files. The software tool MakeInstall uses
information in segment descriptor files to compress and package segments in a format
suitable for installation from tape, from a disk-based LAN segment server, from a remote
site, or from other media. At installation time, the installation tools use segment descriptor
information to make the COE changes required (e.g., update menu files) so that software
components are available to the user.

Some segment information is contained within individual files while other segment
information is collected into a single file, SegInfo. SegInfo is an ASCII file (similar to
a Windows .INI file) with multiple sections containing segment descriptor information.
Table 5-4 lists each of the descriptor files and which are required, optional, or not
applicable for each segment type. Table 5-5 lists the same information for segment
descriptor sections within the SegInfo descriptor file. The VerifySeg tool will
display these two tables when the -t flag is given on the command-line so that the latest
information from these two tables is available online.

A SegInfo segment section begins with a single line of the form

[section name]

where section name is chosen from the list in Table 5-5. A section continues until another
section name is encountered, or the end of the file is reached. A section may appear only
once within the SegInfo file, but the order in which sections appear is unimportant.
Section names are not case sensitive.

If a section name that the tools do not recognize is encountered, a check is made to see if
a helper function is available to process the section. If so, the helper function is invoked,
otherwise an error is issued. Appendix C describes which tools accept helper functions.
Creation of a helper functions require authorization by the DII COE Chief Engineer.

Segment Descriptors

DII COE I&RTS: Rev 3.0 January 1997 5-51

Descriptor Acct
File COTS Grp S/W Data DB Patch
DEINSTALL O O O O O O
FileAttribs O O O O O O
Installed I I I I I I
PostInstall O O O O O R
PreInstall O O O O O O
PreMakeInst O O O O O O
ReleaseNotes R R R R R R
SegChecksum I I I I I I
SegInfo R R R R R R
SegName R R R R R R
Validated I I I I I I
VERSION R R R R R R

R - Required O - Optional N - Not Applicable
I - Created by Integrator or Installation Software

Table 5-4: Segment Descriptor Files

Acct
Section COTS Grp S/W Data DB Patch
AcctGroup N R N N N N
*AppPaths N O O N N N
COEServices O O O O O O
Community O O O O O O
Comm.deinstall O O O O O O
Compat O O O O O N
Conflicts O O O O O O
Data N N N R N N
Database N N O N R O
+DCEDescrip O N O N N N
Direct O O O O O O
FilesList R O O O O O
Hardware R R R R R R
Help O O O O O O
Icons O R O N N O
Menus O R O N N O
Network N N N N N N
Permissions N O O N N O
Processes O O O N N O
*Registry O O O O O O
+ReqrdScripts N R O N N N
Requires O O O O O O
Security R R R R R R
SharedFile O O O N N O

R - Required O - Optional N - Not Applicable
* - NT platforms only + - Unix platforms only

Table 5-5: SegInfo Segment Descriptor Sections

Segment Descriptors

5- January 1997 DII COE I&RTS: Rev 3.05-52

Certain general characteristics are common to all files or sections listed in these two
tables:

1. All descriptor files are ASCII data files. Regardless of platform, the descriptor files
may have an optional file extension. The .TXT file extension is permitted for each
descriptor file except DEINSTALL, PostInstall, PreInstall, and
PreMakeInst. These are actually executables and may have a .BAT extension (for
batch files), a .EXE extension (for compiled code), or no extension at all. The file
extensions are optional, but developers should conform to standards on the platform
for which the segment is targeted.

2. In describing syntax, options which may appear exactly once are delimited by brackets

(i.e., “[]”), while options that may appear multiple times are delimited by braces (i.e.,
“{ }”). The “|” (boolean exclusive or) symbol is used to indicate a selection of one
item from a list of choices. The delimiters are not entered into the actual descriptor
file.

3. Descriptor files may contain comments. Comments are delimited by using either the

standard C convention16 (e.g., delimited by /* */), or on a line by line basis using the #
character. C style comments may not be nested. C style comments may not be used in
PostInstall, PreInstall, PreMakeInst, or DEINSTALL since these are
executable scripts. (These may also be compiled programs instead of scripts, although
scripts are recommended because they can be examined at integration time for
potential problems.)

4. Blank lines may be used freely and are ignored unless they are within a block of text

for insertion, replacement, etc. Blank lines are ignored when searching for a block to
delete or replace. Similarly, blanks, tabs, and other whitespace are ignored unless they
are part of a block to insert or replace.

5. When a block of text is required, such as in adding a block of text to a community file,

the characters “{“ and ‘“}” are used as block delimiters.

6. Keywords inside a descriptor file are always prefixed with the “$” character.

7. C style #ifdef, #else, #elif, #endif, and #ifndef constructs may be used

in descriptor files, along with the standard C boolean operators. These constructs may
not span segment descriptor sections. The constants which may be used in these
constructs are defined in subsection 5.3.

16 This should not be misunderstood as stating a preference for C/C++ over Ada or any other language.
The comments referred to are placed in data files, not executable code. C style comments were selected
because they allow a block of text to be commented out by surrounding the block with a single “/* */” pair
instead of including a comment token on each line.

Segment Descriptors

DII COE I&RTS: Rev 3.0 January 1997 5-53

8. During installation, the COE installation software sets up to five environment
variables: INSTALL_DIR is the absolute pathname to where the segment will be
loaded (PreInstall) or was loaded (PostInstall). MACHINE_CPU and
MACHINE_OS are set to describe the type of platform on which the software has been
loaded. Valid values for these environment variables are listed in subsection 5.3.
SYSTEM_ROOT (for NT only) is set to point to the directory where Windows is
installed. COE_TMPSPACE is the location of temporary space allocated for the
duration of segment installation.

9. Parameters which follow a keyword are given on the same line as the keyword and are

separated by colons. The exception to this rule is when the keyword signals the
beginning of a variable length list. For example,

 $PATH:/etc

 specifies a pathname while

 $LIST
 f1
 f2
 f3

 specifies a list of files.

10. Some segment descriptors, such as the Requires descriptor, specify the name of

another segment that the COE installation tools must search for at install time. To
speed up the search process, segment names are expressed in the form

 segment name:prefix:home dir:[version:{patches}]

 where segment name is the name of the segment, prefix is the segment’s prefix, home

dir is the segment’s expected home directory, while version and patches are optional.
home dir is searched first, and if the segment name found there is the same as that
specified, a match is declared successful. If home dir does not exist, is not a segment,
or the segment name does not match, an exhaustive search is performed on all
segments on all mounted disk partitions.

11. (NT) When a disk drive needs to be specified in a filename, the filename must be

enclosed in double quotes. This is required so that the tools can distinguish between
use of ‘:’ as a field delimiter for descriptors, or as a separator between a disk drive
name and a pathname.

12. Some segment descriptors allow a version number or patch level to be specified. See

the previous Requires example. If no version number is specified, any version found
is successful. If a version number is specified, an ordinary lexical comparison of
primary version numbers is made with zeroes inserted for any missing digits. For

Segment Descriptors

5- January 1997 DII COE I&RTS: Rev 3.05-54

example, a version number such as 3.4/SunOS-4.1.3 is truncated to just the primary
version number which is then expanded to be 3.4.0.0 for comparison purposes.

13. Some descriptor file features require prior Chief Engineer approval, or are restricted to

COE-component segments. These are described in the sections which follow and
generally require the $KEY keyword to be specified in the applicable section. This
keyword requires an authorization key provided by the Chief Engineer. The
authorization key is based on several segment attributes including segment name,
segment prefix, and the section name to which it applies. The format of the $KEY
keyword is

 $KEY:permit requested:authorization key

 where permit requested is the keyword or section name the key applies to, and
authorization key is the key given to the developer by the Chief Engineer. A separate
authorization key is required for each permit requested.

14. Certain keywords or section names may be applicable to one platform but not another.

These are noted in the discussion below. If the tools encounter a keyword that is not
appropriate for a platform, a warning will be generated and the keyword or section
will be ignored.

15. A segment is considered to be a permanent segment if the DEINSTALL descriptor is

not provided. This means that the installation tools will prevent a permanent segment
from being deleted, but it may be upgraded by loading a newer version of the segment.

DII compliance requires the following:

• Segments shall include all required files shown in Table 5-4. (VerifySeg will fail a
segment that does not include a required descriptor file.)

• Segments shall fully specify all dependencies and conflicts through the Requires and

Conflicts descriptor files. (Circular dependencies are not allowed.)

• Segments shall fully specify disk and memory requirements (memory may be omitted

for data segments) in the Hardware file.

• Segments shall not use PostInstall, PreInstall, PreMakeInst, or

DEINSTALL to make modifications that the COE installation software will make. Of
particular importance is that segments shall not delete the segment directory during a
DEINSTALL script.

• Segments shall use the ReleaseNotes file to convey information meaningful to an

operator, not the system integrator. ReleaseNotes files shall not include company
names, names of individuals, nor software trouble report numbers.

Segment Descriptors

DII COE I&RTS: Rev 3.0 January 1997 5-55

• Segments shall specify a version number and date in the VERSION descriptor file and
shall increment the version number for each subsequent release. Version numbers shall
fully comply with the requirements stipulated in Chapter 3 of this document.

5.5.1 AcctGroup

Syntax for the AcctGroup descriptor is

group name:group ID:shell:profile flag:home dir:default profile name

where

group name is an alphanumeric string used to identify this account group. The account
group name must be unique (i.e., no other account group may have the same name).

group id is a Unix group id to be inserted into the password file for accounts created
from this group. The user id is calculated automatically by examining the password file
for user accounts within the same group and then adding 1 to the highest user id.
Group ids less than 100 should be avoided.

shell is the Unix shell to execute when logging in (e.g., /bin/csh, /bin/sh). This
parameter should be left blank for NT platforms.

profile flag is 0 if no profiles are allowed, otherwise 1.

home dir is the home directory for the given account group (e.g.,
/h/AcctGrps/SecAdm).

default profile name is an alphanumeric string identifying the account group’s default
profile. This name is ignored unless the profile flag is nonzero.

In effect, AcctGroup is a template of what to enter into the /etc/passwd file for
accounts within this group.

Group names and profile names are not case sensitive. The maximum number of
characters in a group name, including embedded blanks, is 15. The maximum number of
characters in a profile name17 is 64. The maximum number of characters in the home
directory pathname is 256.

If the account group is to have a default profile, the installation software will automatically
create the profile with the name specified. The profile will be set up to have a classification
level of TOP SECRET (unless the segment specifies otherwise), all possible object
permissions enabled (see the Permissions descriptor), and all possible menu and icon

17 The maximum in the previous I&RTS was limited to 15 characters. This has been extended to support
those services which describe profiles based on a combination of duty position and organization, or similar
approach.

Segment Descriptors

5- January 1997 DII COE I&RTS: Rev 3.05-56

entries enabled. Note that site administrators will not normally assign the default profile to
any user because it would provide greater access than is warranted either from a “need to
know” perspective, or from a perspective of overwhelming the operator with too many
features. The default profile is provided only as a convenient template for creating user
profiles.

The profile classification can be explicitly stated by including a line of the form

$CLASSIF:classification

in the descriptor file. Valid classification values are

UNCLASS
CONFIDENTIAL
SECRET
TOP SECRET

5.5.2 AppPaths (NT Only)

The AppPaths segment descriptor is used to add a list of executables and DLLs to the
NT search path. The executables are listed immediately after the segment descriptor as in

[AppPaths]
app1.exe
app2.exe
app3.DLL

The executables and DLLs must be in the segment’s bin subdirectory.

The installation tools remove the named executables and DLLs from the NT search path
when the segment is deleted. Refer to subsection 5.5.34 for more information on shared
files.

Note: As with Unix, it is a violation of the COE to use this technique to
insert the current working directory into the NT search path.

5.5.3 COEServices

Segments frequently require changes to services provided by the operating system. Make
such requests through the COEServices descriptor to ensure proper coordination with
other segments. One or more entries may follow each keyword below.

$GROUPS (Unix only)

Segments may add entries to the /etc/group file as follows:

Segment Descriptors

DII COE I&RTS: Rev 3.0 January 1997 5-57

$GROUPS
name:group id

where name and group id have the meaning defined by the Unix group file. If the
specified name already exists in the group file but with a different group id, an error will
be generated.

$PASSWORDS (Unix only)

Segments may occasionally need to add entries into the Unix password file to establish file
ownership. The syntax is:

login name:user id:group id:comment:home dir:shell

where these entries correspond to the entries in the Unix passwd file. Multiple lines may
be included to add multiple password entries.

The installation software inserts an “*” for the password field to ensure that these are
system accounts, not actual login accounts. Segments that need to add a user account
must be approved in advance by the Chief Engineer, and then will generally be approved
only for COE-component segments.

The installation software processes the $PASSWORDS keyword before the segment is
actually loaded onto disk so that PostInstall scripts which need to set file ownership
will work properly.

$SERVICES

Ports are added to the /etc/services (or NT equivalent) system file through the
$SERVICES keyword. The syntax is:

$SERVICES[:comment]
name:port:protocol{:alias}

where

name is the name of the socket to add,

port is the port number requested, and

protocol is either tcp or udp.

The optional comment, if provided, will be inserted into the /etc/services file by the
installation software.

Segment Descriptors

5- January 1997 DII COE I&RTS: Rev 3.05-58

If the port number requested is already in use under another name, an error will be
generated. Note that port numbers in the range 2000-2999 are reserved for COE
segments.

This keyword should not be necessary for most DCE applications because endpoints are
defined dynamically.

5.5.4 Community

Many of the descriptor files direct the installation software to insert, delete, replace or
otherwise alter blocks of text in ASCII files. The Community descriptor file is provided
to issue similar commands to the installation software for which no corresponding
descriptor file exists. It is intended to be a “catch all” and should be used carefully, and
only when there is no other way to accomplish the modifications required. VerifySeg
will fail any segment which attempts to use a Community descriptor file to modify a file
that is already handled by another descriptor file.

Segment developers shall use the Comm.deinstall descriptor file to undo changes
made by the Community file. Comm.deinstall is invoked when a segment is
removed, and is essentially a reverse image of the Community file. The
Comm.deinstall is neither required nor useful if the segment is a permanent segment.

The commands listed below are available for both the Community and
Comm.deinstall files. Blocks of text are delimited by braces, where the opening and
closing brace are on a line by themselves. When commands require that a textual search be
done, embedded spaces and control characters are ignored during the search.

To illustrate how the commands work, assume the file IDE.TEST contains the following
text:

Sample file

Define runtime vars
setenv OPT_HOME /h/OPT
setenv OPT_DATA $OPT_HOME/data

set a test var
setenv testvar $HOME

set filec

setenv testvar2 $HOME/data

end of example file

$APPEND

Append the block of text which follows to the end of the file.

Segment Descriptors

DII COE I&RTS: Rev 3.0 January 1997 5-59

Example:

$APPEND
{
This is an example to append at the end of a file
source my_script
#
}

$COMMENT:char

Using the character specified, find the block of text which follows and comment it out.
This effectively deletes text, but has the advantage that it can easily be uncommented.

The command sequence

$COMMENT:#
{
set a test var
setenv testvar $HOME
set filec
}

will replace the text to modify the file as follows:

Sample file

Define runtime vars
setenv OPT_HOME /h/OPT
setenv OPT_DATA $OPT_HOME/data

set a test var
#setenv testvar $HOME
#
#set filec

setenv testvar2 $HOME/data

end of example file

Notice that the blank line between setenv and set is ignored in searching for the lines
to delete, but is preserved in the commented out version of the file.

Note: Be careful to note that the ‘#’ character is not a valid comment
delimiter for all community files! (e.g., X and Motif resource files
use ‘!’ as a comment delimiter.)

Segment Descriptors

5- January 1997 DII COE I&RTS: Rev 3.05-60

$DELETE [ALL]

Find the block of text which follows and delete it from the file. If ALL is specified, delete
every occurrence in the file.

The command sequence

$DELETE
{
set a test var
setenv testvar $HOME
set filec
}

will delete the block of text to modify the file as follows:

Sample file

Define runtime vars
setenv OPT_HOME /h/OPT
setenv OPT_DATA $OPT_HOME/data

setenv testvar2 $HOME/data

end of example file

Notice that the blank line between setenv and set is ignored in searching for the lines
to delete, but is deleted in the resulting version of the file.

$FILE:filename

Name the file to which the commands that follow apply.

Example:

$FILE:/h/IDE/Scripts/IDE.JMCIS

$INSERT [ALL]

Find the first occurrence of the first block of text, then insert the second block of text
immediately after it. If ALL is specified, insert the second block of text after every
occurrence.

Example:

Segment Descriptors

DII COE I&RTS: Rev 3.0 January 1997 5-61

$INSERT
{
setenv OPT_DATA $OPT_HOME/data
}
{
setenv OPT_BIN $OPT_HOME/bin
setenv OPT_SRC $OPT_HOME/src
}

The resulting changes to the example file are:

Sample file

Define runtime vars
setenv OPT_HOME /h/OPT
setenv OPT_DATA $OPT_HOME/data
setenv OPT_BIN $OPT_HOME/bin
setenv OPT_SRC $OPT_HOME/src

set a test var
setenv testvar $HOME

set filec

setenv testvar2 $HOME/data

end of example file

$REPLACE [ALL]

Replace the first occurrence of the first block of text, if found, with the second. If ALL is
specified, replace every occurrence.

Example:

$REPLACE
{
setenv OPT_HOME /h/OPT
}
{
setenv OPT_HOME /home2/OPT
}

Embedded spaces and control characters are ignored in the search, but are preserved in the
replacement. Case is preserved in the search and in the replacement.

Segment Descriptors

5- January 1997 DII COE I&RTS: Rev 3.05-62

$SUBSTR:DELETE [ALL] | INSERT [ALL] | REPLACE [ALL]

When performing a textual search, search for a matching substring instead. Insertions,
deletions, or replacements are made as indicated.

$UNCOMMENT:char

Find the block of text which follows and uncomment it. The comment character is char,
but the block of text which follows the $UNCOMMENT command does not contain the
comment character.

Example (undo the effects of the $COMMENT example above):

$UNCOMMENT:#
{
set a test var
setenv testvar $HOME
set filec
}

Blank lines will also be uncommented if there are any between

set a test var

and

set filec

Consider a more complete example. The following will insert two new environment
variables at the end of the file, replace OPT_HOME with OPTION_HOME, replace
OPT_DATA with OPTION_DATA, and replace all occurrences of the substring “stvar”
with “st_var”. This example also shows the use of comments.

Segment Descriptors

DII COE I&RTS: Rev 3.0 January 1997 5-63

/* This is a multi-line comment
 just like in standard C.
*/
This is a single line comment

Assume file is in IDE Scripts subdirectory
$FILE:/h/IDE/Scripts/IDE.TEST

$REPLACE
{
setenv OPT_HOME /h/OPT
setenv OPT_DATA $OPT_HOME/data
}
{
setenv OPTION_HOME /h/OPTION
setenv OPTION_DATA $OPTION_HOME/data
}

$SUBSTR:REPLACE ALL
{
stvar
}
{
st_var
}

$APPEND
{
#------------------------
BEGIN xxx modifications
#------------------------

setenv my_var /h/IDE

#------------------------
END xxx modifications
#------------------------
}

The resulting file IDE.TEST is

Segment Descriptors

5- January 1997 DII COE I&RTS: Rev 3.05-64

Sample file

Define runtime vars
setenv OPTION_HOME /h/OPTION
setenv OPTION_DATA $OPTION_HOME/data

set a test var
setenv test_var $HOME

set filec

setenv test_var2 $HOME/data

end of example file
#------------------------
BEGIN xxx modifications
#------------------------

setenv my_var /h/IDE

#------------------------
END xxx modifications
#------------------------

This example shows the use of comments to enclose modifications between a
BEGIN/END pair. This technique is recommended when making modifications to
community files to make it easier to determine changes made as segments are installed.

Note: This technique is used by the installation software as environment
extension files are modified. Therefore, developers must not put
such comments in environment extension files.

5.5.5 Comm.deinstall

Comm.deinstall is the inverse of Community. Its purpose is to undo modifications
made to community files when a segment is removed from the system.

The corresponding Comm.deinstall file to undo the changes made in the example
from the Community subsection is:

Segment Descriptors

DII COE I&RTS: Rev 3.0 January 1997 5-65

$FILE:/h/IDE/Scripts/IDE.TEST
$REPLACE
{
setenv OPTION_HOME /h/OPTION
setenv OPTION_DATA $OPTION_HOME/data
}
{
setenv OPT_HOME /h/OPT
setenv OPT_DATA $OPT_HOME/data
}

$SUBSTR:REPLACE ALL
{
st_var
}
{
stvar
}

$DELETE
{
#------------------------
BEGIN xxx modifications
#------------------------

setenv my_var /h/IDE

#------------------------
END xxx modifications
#------------------------
}

5.5.6 Compat

Subsequent releases of a segment are not always backwards compatible. The Compat
descriptor is used to indicate the degree to which backward compatibility is preserved with
the newly released segment. This is achieved by listing version numbers for previous
releases which the current release supports. In the sense used here, backwards
compatibility means that the segment being released will work with other segments that
have been compiled and linked with an earlier release version.

The format of the Compat descriptor is a single line containing one of three possible
entries:

+ALL This indicates that the current release is backwards compatible with
all previous releases.

-NONE This indicates that the current release is not backwards compatible
with any previous release.

Segment Descriptors

5- January 1997 DII COE I&RTS: Rev 3.05-66

version list This indicates that the current release is backwards compatible to a
list of versions. Version lists are denoted by the $LIST,
$EARLIEST, and $EXCEPTIONS keywords.

For example, suppose the new MySeg release is version 3.2.5.4 and that it is compatible
with all versions from 2.9.1 up to the present with the exception of versions 3.0.1.2 and
the 3.1 version series. Then the Compat file would contain the following entries:

First number listed is earliest compatible version
$EARLIEST
2.9.1
Remaining version numbers are exceptions
$EXCEPTIONS
3.0.1.2
3.1

When a digit is omitted from the version number, or an asterisk is in place of the digit,
there is an assumed wildcard in that digit position. That is, any digits would be acceptable
in that position.

The $LIST keyword is used to indicate an explicit list of compatible versions. $LIST is
mutually exclusive with the $EARLIEST/$EXCEPTIONS keyword pair. When specifying
a list, a range can be indicated by the optional keyword $TO. Thus, the previous example
could also have been done as

$LIST
2.9.1 $TO 3.0.1.1
3.0.1.3 $TO 3.0.9
3.2.0 $TO 3.2.5

In some cases, one or more patches must be applied to preserve compatibility. The patches
are listed by number immediately after the version number by using a colon between patch
numbers. This may be done only with the $LIST keyword. For example,

$LIST
2.9.1:P4:P5
3.0.1.1
3.0.2:P8 $TO 3.0.4:P7

This means that the current version is backwards compatible with

• 2.9.1, but only if patches P4 and P5 have been applied
• 3.0.1.1 with no restrictions regarding patches
• 3.0.2 through 3.0.4 with the restriction that patch P8 must be applied to version 3.0.2

and patch P7 must be applied to version 3.0.4.

Segment Descriptors

DII COE I&RTS: Rev 3.0 January 1997 5-67

If no Compat file exists, the present version is assumed to not be backwards compatible
with any previous releases. That is, -NONE is assumed.

5.5.7 Conflicts

Two segments may conflict with one another so that one or the other, but not both, can be
installed. The Conflicts descriptor is used to specify such inter-segment conflicts. The
format is a list of conflicting segments in the form:

segment name:prefix:home dir[:version{:patch}]

where segment name is the name of the conflicting segment as given in the segment’s
SegName descriptor file, prefix is the conflicting segment’s segment prefix, and home dir
is the conflicting segment’s home directory.

The Conflicts descriptor is essentially the converse of the Requires descriptor file.

5.5.8 Data

The Data descriptor is used to describe where data files are to be logically loaded and
their scope (global, local, or segment). Only one of the three scopes may be specified in
the descriptor file; that is, a data segment has one and only one scope.

The syntax is

$SEGMENT:segname:prefix:home dir

for segment data, or

$LOCAL:segname:prefix:home dir

for local data, or

$GLOBAL:segname:prefix:home dir

for global data, where segname, prefix, and home dir refer to the affected segment. The
segname and prefix must match the name given in the affected segment’s SegName
descriptor. Figure 5-9 shows that the data to install is underneath the segment’s data
subdirectory.

5.5.9 Database

The Database segment descriptor is used to identify information such as object
dependencies that are within the database and therefore cannot be resolved without the
use of the DBMS. There are five keywords used under this descriptor to track object-level
information: $REFERENCES, $MODIFIES, $ROLES, $SCOPE, and $ACCESSES. The

Segment Descriptors

5- January 1997 DII COE I&RTS: Rev 3.05-68

first four are used by database segments, the last is used by database application segments.
Their usage is discussed below.

$SCOPE:scope

This keyword specifies the scope of the database objects. Legal values for scope are
UNIQUE, SHARED, and UNIVERSAL. Scope is required for database segments, but it is
not presently used. It is reserved for future use and required now so that segments will not
require modifications later.

$REFERENCES

The $REFERENCES keyword is followed by a list of the individual database objects that
the database segment depends upon which are external to the segment. The Requires
segment descriptor must be used to state a dependency upon the segments whose objects
are listed under $REFERENCES. Version compatibility will be checked using the
Requires descriptor so it is not repeated here. The format for the object list is

$REFERENCES
object name:schema

For example, assume that the GSORTS database segment references the
COUNTRY_CODE table in the S&M segment and the PORTS table in the NID segment.
The DBO accounts for S&M and NID respectively are TABLE_MASTER and NID. The
appropriate descriptor is

$REFERENCES
COUNTRY_CODE:TABLE_MASTER
PORTS:NID

$MODIFIES

The $MODIFIES keyword is followed by a list of the external database objects that the
database segment modifies by adding triggers, or by including them in procedures or
functions. All segments whose objects are listed here must also appear under the
Requires descriptor. The format for the object list is

$MODIFIES
object name:schema:modification type:modification name

The object name and schema follow the same rules as the $REFERENCES keyword.
Modification type is used to stipulate what has been done. Its legal values are TRIGGER
for database triggers or PROCEDURE for database functions, procedures, or packages.
Modification name is the name of the trigger or procedure that is attached to the object.
An example follows defining a trigger named GSORTS_NID_COPY that is attached to the
NID database’s PORTS table.

Segment Descriptors

DII COE I&RTS: Rev 3.0 January 1997 5-69

$MODIFIES
PORTS:NID:TRIGGER:GSORTS_NID_COPY

$ROLES

The $ROLES keyword is followed by a list of the database roles created by the database
segment. Its format is

$ROLES
role name

An example that defines two roles follows.

$ROLES
EWIR_RO
EWIR_DATA1_RW

It is recommended that comments be placed in the segment descriptor to describe what
these roles are for and how they are intended to be used. This is a convenient place to
document such important information.

$ACCESSES

The $ACCESSES keyword is used in a software segment rather than a database segment.
It associates individual applications within a software to their supporting database roles.
Its format is

$ACCESSES
application name:role name:segment name

The application name is the name of the executable within the segment. Role name is the
name of the database role used by the application. segment name is the name of the
database segment that owns that role. That segment will be searched by the installer tool,
if necessary, to obtain the DBO account name. An example follows associating the
EWIR_WIDE application to the EWIR_RO role.

$ACCESSES
EWIR_WIDE.FMX:EWIR_RO:EWIRDB

Note: Do not confuse the Database segment descriptor with the
database segment type. The segment descriptor, described in this
subsection, describes specialized processing for the COE to
perform on a segment which is of segment type ‘database.’

Segment Descriptors

5- January 1997 DII COE I&RTS: Rev 3.05-70

5.5.10 DCEDescrip (Unix Only)

This segment descriptor is used to define characteristics of DCE servers. It is not required
for DCE client applications. The associated keywords are used to describe the server.

$DCESERVERS

This keyword is used to list the servers that are provided by the segment (usually only
one). The server executables are in the bin subdirectory for the segment. The keyword is
followed by a list of the server names, interface attributes, security attributes, and
configuration attributes. The format is:

SERVER servicename:principal:uid:gid:home:starton

where servicename is the name of the service, principal is the DCE account for the server,
uid is the Unix account for the server, gid is the Unix group id for the server, and home is
the Unix home directory for the server. starton is one of the following values: AUTO,
EXPLICIT, BOOT, FAILURE.

Interface attributes are listed in the form:

INTERFACE servicename:interfacename:UUID

where servicename is the name of the service implementing this interface, interfacename is
the name of the interface, and UUID is the universal unique id assigned to this interface.

Interface security attributes are listed in the form:

RPCSECURITY servicename:interfacename:security

where servicename is the name of the service implementing this interface, interfacename is
the name of the interface, and security is the maximum security supported by the server.

Extended configuration attributes are listed in the form:

CONFIG servicename:attribute:scope:UUID

where servicename is the name of the service implementing this interface, attribute is the
name of the attribute in the extended schema, scope is the scope of the attribute (either
COE or SERVER), and UUID is the unique object id for the attribute.

$DCEBOOT
$DCEDEMAND

These two keywords are used to designate processes that are to be started by dced. The
format for the list of processes is the same as for processes listed in the Processes

Segment Descriptors

DII COE I&RTS: Rev 3.0 January 1997 5-71

segment descriptor (see subsection 5.5.25). $DCEBOOT indicates that dced starts the
processes at boot time while $DCEDEMAND indicates that they are started on demand.

$DFSFiles

This keyword is similar in purpose to the FilesList segment descriptor
(subsection 5.5.14). It is used instead of FilesList because the files listed are
maintained by DFS, not by the native operating system. The keyword is followed by a list
of filenames in the form:

filename access

where filename is the DFS filename used by the application, and access indicates the
operations performed on the file (RWX). All file names shall start with
/.../cellname/fs/ .

$KEY:DCE:key

All boot time processes, including those started by dced, require approval by the Chief
Engineer. Therefore, the $DCEBOOT keyword must include the $KEY keyword as well.
key is the authorization key provided by the Chief Engineer and it applies to all servers
within this segment.

There are some important things to note about DCE servers.

• Use $DCEServers instead of the $SERVERS keyword (Network descriptor) to
define DCE-based servers.

• Document DFS files with the $DFSFiles keyword.

• Include a $PASSWORDS entry in COEServices to establish a Unix userid for each

server principal.

• Developers should normally provide a single DCE server in a segment. It would be
unusual to need to provide more than one.

5.5.11 DEINSTALL

The DEINSTALL descriptor file is an executable, either a script or a compiled program,
that is invoked by the installation software when the operator has elected to remove a
segment. This may occur by explicitly selecting a segment to remove or by electing to
install a new version of the segment. DEINSTALL should perform actions such as
shutting down segment-owned background processes prior to segment removal.
Operations performed in preparation for a segment update should normally be done in
PreInstall, while DEINSTALL is used when the segment is to be “permanently”
removed from the system.

Segment Descriptors

5- January 1997 DII COE I&RTS: Rev 3.05-72

If this file does not exist, the segment is assumed to be permanent and cannot be removed
except when installing a new version. If a new version is installed and this file does not
exist, the installation software will use the information in the descriptor directory to undo
changes made by the previous installation of the segment and then simply delete the
directory.

For security reasons, the DEINSTALL script is not run with root-level privileges, unless
the $ROOT keyword is given in the Direct descriptor, described below. Note that the
$KEY keyword must also be specified in the Direct descriptor to acquire root-level
privileges.

5.5.12 Direct

The segment descriptor Direct allows a segment to issues special instructions to the
installation tools. If the segment is part of an aggregate, the directives below apply only to
the segment in whose SegDescrip subdirectory the directives appear.

$ACCTADD:executable

This keyword informs the installation software that the specified executable, in the
segment’s bin subdirectory, should be run each time a user account is added to the
system. VerifySeg will flag use of this keyword as a warning to highlight that it is
being used. Prior permission must be given by the Chief Engineer before this keyword can
be used.

$ACCTDEL:executable

This keyword informs the installation software that the specified executable, in the
segment’s bin subdirectory, should be run each time a user account is deleted from the
system. VerifySeg will flag use of this keyword as a warning to highlight that it is
being used. For security reasons, prior permission must be given by the Chief Engineer
before this keyword can be used.

$CMDLINE

Segments which provide a command-line access must insert this keyword in their segment.

$KEY:request:key

Several of the keywords presented here require authorization by the Chief Engineer. Thus,
$KEY must be provided for each requested permission. key is the authorization key
provided by the Chief Engineer. request is an indication of the type of request being made.
Requests are grouped by the type of request being made (e.g., security-related,
installation-related) and are one of the following values:

Segment Descriptors

DII COE I&RTS: Rev 3.0 January 1997 5-73

INSTALL for permission to run PostInstall, PreInstall, and
DEINSTALL with root permission

ACCTS to use any of the account creation/deletion keywords (e.g.,
for $ACCTDEL, $ACCTADD, $PROFADD, $PROFDEL,
and $PROFSWITCH)

CMDLINE to use the $CMDLINE keyword
SUPERUSER to use the $SUPERUSER keyword

A separate authorization key and $KEY entry is required for each request group, but the
key applies to any and all requests within that group.

$NOCOMPRESS

The MakeInstall tool automatically compresses segments to reduce the amount of
space required on disk or tape, and to reduce the download time. The installation tools
automatically decompress segments at installation time. The $NOCOMPRESS keyword
indicates that compression is not to be performed.

$PROFADD:executable

This keyword operates in the same fashion as $ACCTADD, except that it is used when
profiles are added to the system.

$PROFDEL:executable

This keyword operates in the same fashion as $ACCTDEL, except that it is used when
profiles are added to the system.

$PROFSWITCH:executable

This keyword is similar to $PROFADD except that the executable is run whenever a user
currently logged in switches from one profile to another. The executable is not run when
the user first logs in; it is run only when a profile switch is made.

$REBOOT

The presence of this keyword indicates that the installation software should automatically
reboot the computer after the segment is loaded. If several segments have been selected
for loading at one time, the reboot operation will not occur until all segments have been
processed. The operator will be notified before the reboot occurs and given the option to
override the reboot directive.

$REMOTE[:XTERM | :CHARBIF]

This keyword indicates that the functions (all functions) provided by this segment can be
executed remotely. At installation time, the installation software will note that this

Segment Descriptors

5- January 1997 DII COE I&RTS: Rev 3.05-74

segment can be executed remotely. If the XTERM attribute is present, it indicates that the
segment can also be accessed via an “xterm” capability, and output will be routed to the
display surface pointed to by the DISPLAY environment variable setting. If the CHARBIF
attribute is present, it indicates that the segment supports a character-based interface.
CHARBIF and XTERM will normally be mutually exclusive.

By default, segments are assumed to be locally executable only.

$ROOT:PostInstall | PreInstall | DEINSTALL

The presence of this keyword indicates that the specified descriptor must be run with root
privileges. A separate $ROOT entry is required for each descriptor. VerifySeg will flag
use of this keyword as a warning to highlight that it is being used. For security reasons,
prior permission must be given by the Chief Engineer before this keyword can be used.
$ROOT requires the $KEY keyword as well.

$SUPERUSER

Segments which provide or require superuser privileges, via a command-line or otherwise,
must insert this keyword in their segment. Note that the $KEY keyword must also be used
to verify that Chief Engineer approval has been obtained.

5.5.13 FileAttribs

The FileAttribs descriptor allows a segment to specify the attributes (owner,
read/write permissions, group) for each file in the segment. It is created by the tool
MakeAttribs (see Appendix C). The installation tools, just prior to PostInstall,
will use information in this file to set file attributes.

FileAttribs has certain restrictions due to security and segment integrity
considerations. The following will be ignored:

• Files within the SegDescrip subdirectory
• Files outside the segment
• Requests to set root ownership
• Requests to set Unix “sticky bits” (e.g., chmod 4644)

If FileAttribs is not provided by the segment, the installation tools will automatically
do the following for all except COTS segment types:

• chmod 554 for all files in the bin subdirectory
• chmod 664 for all files in the data subdirectory
• for account groups, set owner to the same group id as specified in the AcctGrps

descriptor for all subdirectories except SegDescrip
• for other segment types, set owner to the same group id as the affected segment for all

subdirectories except SegDescrip.

Segment Descriptors

DII COE I&RTS: Rev 3.0 January 1997 5-75

5.5.14 FilesList

FilesList is a list of files and directories that make up the current segment. It is
required for COTS segments. For other segment types, it is useful for documenting
community files modified or used by the segment. The reason that this descriptor is
required for COTS segments is that COTS products do not usually conform to the DII-
mandated directory structure. Therefore, the location of files modified by or contributed
by the segment is not usually readily apparent.

FilesList may contain the following keywords:

$DIRS a list of directories which this segment adds to the system. All files in
the directory are assumed to belong to the segment.

$FILES a list of files which this segment adds to the system.

$PATH a shortcut for specifying a pathname. Succeeding $DIRS or $FILES
are relative with respect to the path specified.

A keyword must precede any list so that it will be clear whether a directory or a file is
intended.

As an example, assume a segment to be installed creates the following four subdirectories

/h/data/test/data1
/h/data/test/data2
/h/data/opt/data3
/usr/opt/temp

and adds three files (f1, f2, f3) to the /etc subdirectory. Then the file FilesList
could contain the following entries:

$PATH:/h/data
$DIRS
test/data1
test/data2
opt/data3
$DIRS
/usr/opt/temp
$PATH:/etc
$FILES
f1
f2
f3

The $DIRS keyword before /usr/opt/temp is not necessary, but is shown to
illustrate that FilesList may contain multiple occurrences of the keywords.

Segment Descriptors

5- January 1997 DII COE I&RTS: Rev 3.05-76

For COTS products, this descriptor must be used to list:

1. all files and directories the product adds that lie outside the segment’s assigned
directory, and

2. any community file the COTS product modifies unless the modification is made by the
COE installation tools.

For example, assume a COTS segment adds a port to /etc/services through the
COEServices segment descriptor. Further, assume that the vendor provides a program
that directly modifies the /etc/group file as part of the installation process. Then
FilesList must list /etc/group but does not need to include /etc/services
because the installation tool modifies it as a result of the COEServices descriptor.

5.5.15 Hardware

The Hardware descriptor defines the computing resources required by the segment.
Keywords $CPU and $MEMORY may appear only once; both are required for all segments,
except that $MEMORY may be omitted for a data segment. $DISK and $PARTITION are
mutually exclusive, but one must appear in the segment descriptor. $DISK may appear
only once, but $PARTITION may appear multiple times. $OPSYS and $TEMPSPACE
are optional.

$CPU:platform | ALL

platform is one of the supported platform constants listed in subsection 5.3 for
MACHINE_CPU, or ALL. If ALL is given, it indicates that the segment is hardware
independent (e.g., a data segment). If platform is a generic constant (e.g., HP or PC), it
applies to all platforms of that class. Thus,

$CPU:PC

indicates that the software can be loaded on any PC, whether the PC is a 386, 486, or
Pentium class machine. However,

$CPU:PC386

indicates that the software can be loaded on a 386 or better class platform. Similarly,
HP712 indicates that the software can be loaded on an HP712 or better class platform that
is binary compatible with the HP712.

$DISK:size[:reserve]

size is expressed in kilobytes and is the size of the segment, including all of its
subdirectories, at install time. The COE tool CalcSpace (see Appendix C) will compute
the disk space occupied by a segment and update this keyword. reserve is also expressed
in kilobytes and is the additional amount of disk storage to reserve for future segment
growth.

Segment Descriptors

DII COE I&RTS: Rev 3.0 January 1997 5-77

$MEMORY:size

size is expressed in kilobytes of RAM required.

$OPSYS:operating system | ALL

operating system is one of the supported platform constants listed in subsection 5.3 for
MACHINE_OS, or ALL. If ALL is given, it indicates that the segment is operating system
independent. Dependencies on a particular version of the operating system are defined in
the Requires descriptor where a dependency on a specific segment (e.g., operating
system with a particular version) is described.

$PARTITION:diskname:size[:reserve]

This keyword allows segments to reserve space on multiple disk partitions. The
installation software will not split a segment across disk partitions, but the segment may
do so in a PostInstall script. Use of multiple disk partitions is discouraged.

size and reserve have the same meanings as for $DISK. For Unix platforms, diskname is
either an explicit partition name (e.g., /home2) or an environment variable name of the
form DISK1, DISK2, ... DISK99. The installation software will set the environment
variables DISK1, DISK2, etc. to the absolute pathname for where space has been
allocated. These environment variables are defined for PreInstall and
PostInstall, but not for DEINSTALL. $PARTITION keywords are assumed to be
in sequential order, so that environment variable DISK1 will refer to the first keyword
encountered, DISK2 to the second, etc.

For NT platforms, diskname must be a disk drive name. For example,

$PARTITION:”D:”:2048

requests 2MB of space on the “D” disk drive.

For example, suppose a TDA is compiled to run on an HP, a Solaris, and an NT
workstation. Assume for the HP it requires 512 K of memory, requires 1 MB of disk
storage for the program and its data files, and will expand over time to a maximum of
4 MB. For Solaris, assume it requires 576 K of memory, 1.5 MB for initial disk space, and
will expand to 5 MB. For a PC, assume the requirements are the same as for the Solaris
machine. The proper Hardware file is

Segment Descriptors

5- January 1997 DII COE I&RTS: Rev 3.05-78

#ifdef HP
$CPU:HP
$DISK:1024:3072
$MEMORY:512

#elif SOL
$CPU:SOL
$DISK:1536:3584
$MEMORY:500

#elif PC && NT
$CPU:PC486
$DISK:1536:3584
$OPSYS:NT
$MEMORY:571

#endif

Note that this example indicates that the information described is the same for all HP
platforms, the same for all Solaris platforms, but that it only applies to PC486 or better
machines running Windows NT.

As another example, assume a data segment is to be allocated across three disk partitions.
Further assume that the first partition must be /home5 and requires 10 MB, but the
remaining space required is 20 MB each and can be on any available disk partition. The
proper $PARTITION statements are:

$PARTITION:/home5:10240
$PARTITION:DISK2:20480
$PARTITION:DISK3:20480

Assume that the installation software is able to allocate space on /home5 as requested,
and that the remainder of the space requested is on /home18. The installation software
will set the following environment variables:

setenv DISK1 /home5
setenv DISK2 /home18
setenv DISK3 /home18

$TEMPSPACE:size

Some segments may need temporary space during the installation process. The
$TEMPSPACE keyword requests that size kilobytes of disk space be allocated for
temporary use during the installation process. If space is available, the installation software
sets the environment variable COE_TMPSPACE to the absolute path where space was
allocated. If space is not available, an error message is displayed to the operator and the
segment installation fails. The installation software automatically deletes the allocated
space when segment installation is completed. Space is allocated prior to executing
PreInstall.

Segment Descriptors

DII COE I&RTS: Rev 3.0 January 1997 5-79

5.5.16 Help

This segment descriptor is a place holder for a future COE revision. Its purpose is to
provide a mechanism for identifying and managing help files within the system. Segment
developers should use this descriptor now to reduce migration problems later.

As Figure 5-2 indicates, segment help files are located directly underneath the directory

SegDir/data/Help

They are listed individually in the Help segment descriptor and grouped according to
their format. Help file format is identified by one of the following keywords:

$HTML a list of help files in HTML format.

$MAN a list of help files in Unix man page format.

$MSHELP a list of help files in Microsoft Help format (NT only).

$TEXT a list of help files in plain ASCII text format (i.e., no graphics or special
characters).

$OTHER a list of files in a format other than that identified by the preceding
keywords.

The order in which these keywords is listed is not important and they may be repeated
multiple times within the segment descriptor. HTML is the COE-standard format, but the
other formats are provided to assist legacy system migration.

For example, assume a segment contains two HTML-format help files (H1 and H2), Unix
man pages (man1 and man2), three ASCII text files (T1, T2, and T3), and one help file
in an internal format (doc1). Then the proper Help segment descriptor entries are:

[Help]
$HTML
H1
H2
$MAN
man1
man2
$TEXT
T1
T2
T3
$OTHER
doc1

Segment Descriptors

5- January 1997 DII COE I&RTS: Rev 3.05-80

5.5.17 Icons

The Icons descriptor is used to define the icons that are to be made available on the
desktop to launch segment functions. The format of the descriptor is a list of files
underneath data/Icons that define icon bitmaps and their associated executables. Refer
to the Executive Manager API documentation for a description of the file format.

5.5.18 Installed

The installation software creates the file Installed as segments are loaded. The file
specifies the segment that was loaded, the date and time of the installation, which
workstation was used to do the installation, and the version number of the software used
to do the installation. This file is located underneath the segment descriptor directory.

5.5.19 Menus

Use the Menus descriptor to list the names of menu files contained within the segment.
Figure 5-2 shows that segment menu files are located underneath data/Menus. Refer to
the Executive Manager API documentation for the menu file format.

For account groups, this descriptor is simply a list of the account group’s menu files. For
other segments, the format of each line is

menu file[:affected menu file]

where menu file is the name of a menu file underneath the segment’s data/Menus
subdirectory, and affected menu file is the account group menu file to update. If multiple
account groups are affected, as listed in the SegName descriptor, each affected account
group is updated. If no affected menu file is listed, then menu file is simply added to the
list of menu files which comprise the account group’s menu templates.

For example, suppose a segment called ASWTDA has four menu files in the data/Menus
subdirectory: System, MoreStuff, ASWTDA, and Logging. Assume that System is
to be added to the affected account group’s System menu file, and MoreStuff is to be
added to the affected account group’s Default menu file. The proper entries are as
follows:

System:System
MoreStuff:Default
ASWTDA
Logging

5.5.20 Network

The Network descriptor is used to describe network-related parameters. Use of this
descriptor requires prior approval by the DII COE Chief Engineer and its use is restricted
to COE-component segments, except for DCE Servers which are not necessarily COE-

Segment Descriptors

DII COE I&RTS: Rev 3.0 January 1997 5-81

component segments. VerifySeg will strictly fail any segment that includes this
descriptor unless it is a COE-component segment or it is a DCE server (e.g., the
DCEDescrip is provided in the segment’s SegInfo file).

One or more entries may follow each keyword listed below.

$HOSTS

IP addresses and hostnames are generally established by a system or network
administrator. Segments may add IP addresses and host names as follows:

$HOSTS
LOCAL | REMOTE :IP address:name{:alias}

where IP address, name, and alias are as defined for the Unix /etc/hosts file. If the
IP address specified already exists in the network hosts file, the name and alias entries are
added as alias names. If LOCAL is specified, the entry is made only to the local network
hosts file. If REMOTE is specified, the entry is applied to the NIS/NIS+ or DNS server. If
REMOTE is specified but neither NIS/NIS+ or DNS are installed, it will default to
LOCAL.

Segments should rarely need to directly add host table entries. VerifySeg will issue a
warning for any segment which adds host table entries.

$KEY:Network:key

key is the authorization key given to the segment developer by the Chief Engineer. This
entry is required only once within the section, and it applies to all entries within the
section.

$MOUNT (Unix only)

The $MOUNT keyword is used to specify NFS mount points. The syntax is

hostname:NFS mount point:target dir

where hostname is the name of a workstation on the network, NFS mount point is the file
partition to mount, and target dir is where to mount the requested partition on the local
machine. If target dir does not exist on the local machine, it will be created.

For example, the sequence

$MOUNT
dbserver:/home3/USERS:/h/USERS

will perform the Unix equivalent of

Segment Descriptors

5- January 1997 DII COE I&RTS: Rev 3.05-82

mount dbserver:/home3/USERS /h/USERS

If the hostname specified is the same as the local machine, a mount is not performed.
Instead, the NFS mount point is made available for other workstations to mount. If a
mount is performed as a result of processing this keyword, the system will automatically
reboot the system after segment installation is completed. It performs as if the $REBOOT
keyword (see the Direct descriptor) were encountered; that is, the operator is notified
that a reboot is required and given an option to override the reboot directive.

$NETMASK:mask

This keyword allows a COE-component segment to set the subnet mask to mask. This
should rarely be required since the netmask is normally established as part of the kernel
COE. If two COE-component segments attempt to set the netmask, the last segment
loaded succeeds.

$SERVERS

Most COE services are implemented as servers. This keyword allows a segment to list the
servers, by symbolic name, that it contains. These servers are registered with the COE so
that other segments can obtain their location through the COEFindServer function (see
Appendix C).

Note: Servers implemented through DCE functions should not use this
keyword. The $DCESERVERS keyword should be used in the
DCEDescrip segment descriptor.

Each name listed is added to a table maintained by the COE of all servers in the system.
This table is used by the System Administration software to allow a site administrator to
indicate which platform actually contains the server. The name given is added as an alias
to the network host table for the workstation that contains the server. If NIS/NIS+/DNS
are being used, the alias is added to the NIS/NIS+/DNS-managed host table. Otherwise, it
is added to /etc/hosts.

For example, assume a COE-component segment contains two servers named
masterTrk and masterComms. Assume that this segment is loaded on two
workstatations: sys1 and garland. Some servers are designed to recognize whether
they are the master server or are a slave to a master server located elsewhere. For this
reason, the COE must handle situations where the same segment is loaded on a server and
a client machine. Assume in this example that the segment operates as a master server on
sys1, but as a slave on garland.

The following statements identify the servers contained within this segment:

$SERVERS
masterTrk
masterComms

Segment Descriptors

DII COE I&RTS: Rev 3.0 January 1997 5-83

When the segment is loaded, the installation software performs the following actions:

1. Add masterTrk and masterComms to the COE-maintained list of servers if they
are not already there.

2. Check to see if masterTrk or masterComms already exist in the network host
table. If so, processing is completed.

3. Otherwise, ask the operator if this is the server platform for masterTrk and
masterComms.

4. If the operator answers “no” to the previous question, processing is complete.
5. If the answer is “yes,” update the network host table to contain masterTrk and

masterComms as aliases for the machine being loaded.

Note that this approach does not require the server (sys1) to be loaded prior to the client
(garland). Furthermore, the site administrator can later change the configuration
because all necessary information is available to the System Administrator software. Also
note that the segment does not require the actual hostnames or IP addresses.

Hostnames are site-specific and cannot be predicted in advance. Therefore, the COE
requires that segments use meaningful symbolic names as illustrated here instead of
making assumptions about a specific hostname or naming convention.

5.5.21 Permissions

The Security Administrator software provides the ability to describe objects (files, data
fields, executables, etc.) which are to be protected from general access. This information is
used to create profiles which limit an operator’s ability to read or modify files.
Applications may query the security software to determine the access permissions granted
to the current user. The Permissions file is the mechanism by which segments describe
objects and what permissions to grant or deny for the objects.

This descriptor is a sequence of lines of the form:

object name:permission abbreviation:permission

object name is the item to be controlled, permission is the type of access to grant or deny
(add, delete, read, etc.), and permission abbreviation is a single character abbreviation for
the permission.

Permission abbreviations specified for an account group must agree with all segments
which become part of the group. The following are reserved abbreviations and their
meanings:

Segment Descriptors

5- January 1997 DII COE I&RTS: Rev 3.05-84

A - Add
D - Delete
E - Edit
P - Print
R - Read
V - View
X - Transmit

Segments may use additional abbreviations as required.

For example, suppose a segment generates reports that are to be protected. Permissions
relevant to reports are delete, print, read, and archive. The proper Permissions file is:

Reports:D:Delete:P:Print:R:Read:Z:Archive

(Z is used to indicate archive permission in this example.)

If the Permissions file is missing, the security software will report that no access
permissions are to be granted for the requested object.

5.5.22 PostInstall

Most of the work required to install segments is performed by the COE installation
software through information contained in the descriptor directory. However, additional
segment-dependent steps must sometimes be performed. PostInstall is an
executable, either a script or a compiled program, that segment developers may provide to
handle segment-specific installation functions after the segment has been copied to disk
and installed by the COE. During installation, PostInstall may invoke functions (e.g.,
prompt the user) described in Appendix C.

The PostInstall descriptor must not do any operations that are performed by the
COE installation software. For security reasons, the PostInstall script is not run with
root-level privileges unless the $ROOT keyword is given in the Direct descriptor. Note
that the $KEY keyword must also be specified in the Direct descriptor before root-level
privileges will be granted.

5.5.23 PreInstall

The PreInstall descriptor file is identical to PostInstall except that it is invoked
by the installation software before the segment is loaded onto the disk. It must not do any
operations that are performed by the COE installation software. For security reasons, the
PreInstall script is not run with root-level privileges, unless the $ROOT keyword is
given in the Direct descriptor. Note that the $KEY keyword must also be specified in
the Direct descriptor before root-level privileges will be granted.

Segment Descriptors

DII COE I&RTS: Rev 3.0 January 1997 5-85

5.5.24 PreMakeInst

PreMakeInst is an optional executable program or script that is invoked by the
MakeInstall tool. It’s purpose is to allow a segment to perform “cleanup” operations,
before MakeInstall writes the segment to the distribution media. Example cleanup
operations include:

• deleting temporary files
• ensuring no “core” or other “garbage” files are in the segment
• no compiler “scratch” files, such as temporary intermediate object files.

MakeInstall sets the environment variables INSTALL_DIR, MACHINE_CPU, and
MACHINE_OS prior to invoking PreMakeInst.

5.5.25 Processes

Use the Processes descriptor to identify background processes (see subsection 5.9.6).
The format of the descriptor is a keyword which identifies the type of process, followed by
a list of processes to launch in the form

process {parameters}

where process is the name of the executable to launch, and parameters are optional
process-dependent parameters. Output from the process is piped to /dev/null. For
example, suppose TestProc is a background process which accepts two parameters, -t
and -c. It will be launched in a manner equivalent to

TestProc -t -c >& /dev/null &

Valid keywords to identify process type are:

$BOOT specify a list of processes to launch at boot time
$BACKGROUND specify a list of background processes
$PERIODIC specify a list of background processes to run at some

specified interval
$PRIVILEGED specify a list of processes to run in privileged (i.e., “root”)

mode (available for Unix only)
$RUN_ONCE specify a list of “one-shot” processes to run the next time

the system is started, but only the next time the system is
started and never thereafter

$SESSION specify a list of login session processes
$SESSION_EXIT specify a list of processes to run prior to terminating a login

session

The $PERIODIC keyword requires specification of the required interval, in hours. The
format is

Segment Descriptors

5- January 1997 DII COE I&RTS: Rev 3.05-86

$PERIODIC:hours

Executables are assumed to be in the segment’s bin subdirectory. The $PATH keyword
can be used to indicate a different location. The syntax for the $PATH keyword is

$PATH:pathname

where pathname may be either a relative or an absolute pathname. If the pathname is
relative, it is relative to the segment’s home directory.

Use of boot-time, background, periodic, privileged, and “one shot” processes requires
authorization by the Chief Engineer. Therefore, the $KEY keyword must be specified
once, in the form

$KEY:Processes:key

The authorization key applies to all requests within the Processes segment descriptor.

The Processes descriptor is a powerful capability the COE provides for managing
application processes. Refer to documentation in the Developer’s Toolkit for more
detailed information on this descriptor.

Note: DCE processes are not described with the Processes
descriptor. Use the DCEDescrip segment descriptor for DCE
server-related processes.

5.5.26 Registry (NT only)

The Registry segment descriptor allows segments to add entries to the NT registry. It is
followed by a list of keys and filenames, underneath the segment’s data/Registry
subdirectory, whose contents are the key values to add to the registry. VerifySeg will
generate an error if any of the files listed do not exist.

Consider the following example.

[Registry]
$HKEY_LOCAL_MACHINE/SOFTWARE:MyEntries
$HKEY_USERS/DEFAULT:DEFAULT_USER
$HKEY_USERS:ALL_USERS

This indicates that files named MyEntries, DEFAULT_USER, and ALL_USERS are
located under the directory SegDir/data/Registry (where SegDir is the segment’s
assigned directory). The contents of these files will be added to the registry under the keys

Segment Descriptors

DII COE I&RTS: Rev 3.0 January 1997 5-87

HKEY_LOCAL_MACHINE/SOFTWARE
HKEY_USERS/DEFAULT
HKEY_USERS/<user ID>

This capability must be used with great care.

• The installer tools will remove registry entries added with this segment descriptor
when the segment is deleted.

• Segment developers shall not create root keys.

5.5.27 ReleaseNotes

Use the ASCII file ReleaseNotes to provide information useful to an operator in
understanding the new functionality being provided by the segment or the problems being
fixed. It is not a help file, nor is it information targeted to the system integrator. Therefore,
it must not refer to problem report numbers, version numbers, release dates, individuals or
companies, point of contact, or similar information. (This type of information is contained
elsewhere, such as in the VERSION file, and duplication of information may lead to
conflicting or confusing information for the operator.) The ReleaseNotes file must not
contain any tabs or embedded control characters.

An example of a “poor” ReleaseNotes file is

Release: 5.6.3
Point of Contact: John Doe, Tritron Company
Phone: (619) 555-1234

1. Implemented NCR #302
2. Added check for memory overflow
3. Fixed problem with double scrolling in STR #307

An example of a “good” ReleaseNotes file is

This release fixes two known problems:

(a) Calculation of range and bearing for polar latitudes
has been corrected

(b) Display of garbled latitude/longitude in the Track Summary
display for ownship has been corrected

The following new features are added with this release

1. Search and Rescue TDA added.

2. Option added to restrict operator deletion of comms
messages to only those created by the operator.

Segment Descriptors

5- January 1997 DII COE I&RTS: Rev 3.05-88

5.5.28 ReqrdScripts (Unix only)

Use the ReqrdScripts descriptor to define the files that establish the runtime
environment (account group segment types) or to define files to extend the runtime
environment (all other segment types). For account group segments, the syntax is one or
more lines of the form:

script name:C | L

where C means to copy and L means to create a symbolic link. This flag is used when
login accounts are created to either copy environment files to the user’s login directory or
to create a symbolic link. There can be a maximum of 32 scripts. A script name is
restricted to a maximum length of 32 characters.

For example, the ReqrdScripts file for the System Administrator account group is

.cshrc:C

.login:C

The descriptor format for segment types other than account group is slightly different:

script name:env ext name

where script name is the name of a script in the affected account group’s Scripts
subdirectory and env ext name is the name of an environment extension file in the present
segment’s Scripts subdirectory.

For example, assume a segment loaded under /h/TstSeg with a segment prefix TST is
to be added to the System Administrator application and it requires extending the
.cshrc file. The proper ReqrdScripts entry is:

.cshrc:.cshrc.TST

The installation tools will insert the statements

if (-e /h/TstSeg/Scripts/.cshrc.TST) then
source /h/TstSeg/Scripts/.cshrc.TST

endif

into the file /h/AcctGrps/SysAdm/Scripts/.cshrc . When the segment
TstSeg is deleted, the installation tools will remove these statements.

Refer to documentation in the Developer’s Toolkit for more information.

Segment Descriptors

DII COE I&RTS: Rev 3.0 January 1997 5-89

5.5.29 Requires

Segment dependencies are stated through the Requires descriptor. The format is:

[$HOME_DIR:pathname]
segment name:prefix:home dir:[version{:patch}]

Segments will not be loaded until all segments they depend upon are loaded. For this
reason, the parent segment for an aggregate must not list child segments in the
Requires descriptor.

The optional $HOME_DIR keyword is used in situations where a segment must be loaded
onto the disk in a particular place. This technique should be avoided.

For example, assume the segment TEST must be installed in the directory
/home3/tmp/TEST, it requires version 3.0.2 of segment SegA with patches P1 and
P4, and also requires SegB version 5.1.1. The Requires descriptor is

$HOME_DIR:/home3/tmp/TEST
SegA Name:SEGA:/h/SegA:3.0.2:P1:P4
SegB Name:SEGB:/h/SegB:5.1.1

In some cases, it may be possible that a segment dependency can be fulfilled by one or
more segments. This is indicated by bracketing such segments with braces and using the
keyword $OR between acceptable alternatives.

As an example, suppose the segment TEST above has a dependency that can be satisfied
by SegA or the combination of SegB and SegC. The proper Requires descriptor is

$HOME_DIR:/home3/tmp/TEST
{

SegA Name:SEGA:/h/SegA
$OR

SegB Name:SEGB:/h/SegB
SegC Name:SEGC:/h/SegC

}

Multiple bracketed alternatives may appear in the same descriptor.

Note: The parent segment for a child does not need to be listed in the
child’s Requires descriptor. By virtue of naming the aggregate
parent in SegName, there is an implied dependency.

Segment Descriptors

5- January 1997 DII COE I&RTS: Rev 3.05-90

5.5.30 Security

The Security descriptor contains a single entry indicating the highest classification
level for the segment (UNCLASS, CONFIDENTIAL, SECRET, TOP SECRET). If the
segment contains items with multiple classification levels, the highest classification level
must be specified.

Note: This file is used only to determine whether or not software should
be loaded onto a workstation. It should not be confused with data
labeling or other security features provided by trusted systems.

5.5.31 SegChecksum

The file SegChecksum is an optional file created by integration software. It contains
information necessary for the System Administrator software to perform an integrity check
on the installed software. If the file does not exist, the integrity check cannot be performed
on the segment.

5.5.32 SegInfo

SegInfo is an ASCII descriptor file which contains segment descriptor information in
one or more sections. Table 5-5 lists the possible sections.

5.5.33 SegName

The SegName descriptor provides the following information:

• segment type ($TYPE keyword)
• segment name ($NAME keyword)
• segment prefix ($PREFIX keyword)
• segment attributes ($TYPE keyword)
• optional aliases for this segment ($EQUIV keyword)
• conditional loading requirements ($LOADCOND)
• company and product name to add to the registry (NT only)
• if applicable, affected account group, or affected segment for patches ($SEGMENT

keyword)
• if applicable, name of parent or child segments ($PARENT, $CHILD keywords)

The keywords $TYPE, $NAME, and $PREFIX are required for each SegName
descriptor. Additional keywords required depend upon segment type. COE-component
segments may not contain $SEGMENT, $PARENT, or $CHILD keywords. All other
segments must have one $PARENT line, one or more $CHILD lines, or one or more
$SEGMENT lines.

Segment Descriptors

DII COE I&RTS: Rev 3.0 January 1997 5-91

$COMPANY_NAME:string1 (NT only)
$PRODUCT_NAME:string2 (NT only)

These two keywords are used for COTS products on NT platforms. They are used to
insert a company and product name into the registry. If either keyword is used, both are
required. This causes the installer to insert the company name (string1) and product name
(string2) in the registry entry

SOFTWARE\company name\product name

$EQUIV:name:prefix

This keyword, which may appear multiple times, allows a segment to define aliases. It is
intended to help legacy segments migrate from an earlier COE (e.g., JMCIS or GCCS
COE) to the DII COE. It is primarily intended for account group segments, but may be
used for other segments as well. name is the desired alias and prefix is the alias segment
prefix.

This keyword allows a segment from a legacy system to be loaded under an equivalent
account group without the need to modify the legacy segment’s dependency statements.
For example, assume that SegA was originally developed for JMCIS and that it states in
its segment descriptors a dependency on an account group whose name is JMCIS.
Assume that the legacy segment prefix was JMC. Assume that SegB was developed for
the GCCS account group. Finally, assume that SegA and SegB are to be loaded on a new
system under an account group whose name is New Acct Group and whose segment
prefix is NAG. Then the keyword entries

$NAME:New Acct Group
$PREFIX:NAG
$EQUIV:JMCIS:JMC
$EQUIV:GCCS:GCCS

allow SegA and SegB to be loaded properly even though they state a dependency on
segments, JMCIS and GCCS, that do not exist in the new system.

$EXCLUDE:name:prefix:home dir

This keyword is used to indicate an account group that a generic segment is to be
excluded from. name is the name of the account group, prefix is the account group’s
segment prefix, and home dir is the assumed location of the account group’s assigned
directory. This keyword can only be used with segments that specify the GENERIC
attribute. The CharIF and RemoteX account groups are automatically excluded.

$KEY:COE:key

This keyword is required for all segments that have the attribute COE CHILD, COE
PARENT, or WEB SERVER. key is the authorization key obtained from the DII COE

Segment Descriptors

5- January 1997 DII COE I&RTS: Rev 3.05-92

Chief Engineer. For backwards compatibility, existing COE-component segments are
“grandfathered” and may omit this keyword for now. However, existing segments should
be modified to use this keyword to ensure future compatibility.

$LOADCOND

This keyword, which accepts no parameters, is used to indicate that a child segment in an
aggregate is to be conditionally loaded. The child segment is loaded only if the segment
does not already exist on the disk or if the child segment is a later version than one already
on the disk. If this keyword is used, the segment must also have the CHILD or COE
CHILD attribute or else an error is given. This capability is not required for any other type
of segment because the installer tool already checks to be sure an earlier version is not
unintentionally being loaded over a later version.

$TYPE:segment type[:attribute1:attribute2:...]

where valid segment types are

COTS
ACCOUNT GROUP
SOFTWARE
DATA
DATABASE
PATCH

and valid segment attributes are

AGGREGATE
CHILD
COE CHILD
COE PARENT
WEB SERVER
WEB APP
GENERIC

AGGREGATE is used to indicate that the segment being defined is the aggregate parent
segment. It is valid only for account group, data, and software segment types. Aggregates
must list one or more child segments with the $CHILD keyword. The COE does not
allow an aggregate of aggregates. That is, it is not valid for Aggregate A to have a child B
which is also an aggregate.

CHILD is used to indicate that the segment being defined is an aggregate subordinate
segment. The parent segment must be listed using the $PARENT keyword.

COE PARENT is used to indicate that the segment being defined is the primary COE
segment. Its home directory will be /h/COE.

Segment Descriptors

DII COE I&RTS: Rev 3.0 January 1997 5-93

COE CHILD is used to indicate that the segment being defined is a COE-component
segment other than the parent. The installation tools will verify that the segment is an
authorized COE component and if not will reject the segment. This is done through the
$KEY keyword.

WEB SERVER is used to indicate that this segment is a Web server and a COE-
component segment.

WEB APP is used to indicate that this segment is a Web-based application segment.

GENERIC is used to indicate that this is a generic segment that should be added to the
account groups as described in subsection 5.4.10.

Segment types are mutually exclusive; only one segment type may be given. Segment
attributes are also mutually exclusive, except for Web and GENERIC attributes as follows:

• WEB SERVER may be combined with AGGREGATE, or CHILD.
• WEB APP may be combined with AGGREGATE, CHILD, or COE CHILD.
• GENERIC may be combined with all other attributes except WEB SERVER and COE

PARENT.

For example, a generic Web mission application that is a child component of an aggregate
would be expressed as

$TYPE:SOFTWARE:CHILD:WEB APP:GENERIC

The order in which attributes are listed is unimportant.

$NAME:name

where name is a string of up to 32 alphanumeric characters. Embedded spaces may be
used for readability, but the string must not contain tabs or other control characters.

$PREFIX:prefix

This keyword establishes the segment’s assigned prefix, prefix.

$SEGMENT, $CHILD, $PARENT

The syntax for these three keywords is the same.

keyword:name:prefix:home dir

The descriptor file may contain one and only one $PARENT keyword. Multiple affected
segments or child segments may be listed by listing each segment on a separate line.

Segment Descriptors

5- January 1997 DII COE I&RTS: Rev 3.05-94

Note: Do not confuse the attribute CHILD with the $CHILD keyword.
The $CHILD keyword is used to indicate a list of subordinate
segments in the parent of an aggregate segment. The CHILD
attribute is used to indicate that a segment is the subordinate
segment in an aggregate whose parent is identified with the
$PARENT keyword.

5.5.34 SharedFile

This segment descriptor handles installation of NT shared DLLs and Unix shared libraries.
It is followed by a list of filenames that are the names of the shared libraries (Unix) or
DLLs. They must be located in the segment’s bin subdirectory, which is the DII-
compliant location for shared files. VerifySeg issues an error message if a filename
listed does not exist under the segment’s bin subdirectory. Shared files must use the
segment prefix naming convention to assure that the names are unique.

At installation time, the segment installer copies the shared file to the directory
/h/COE/Shared, deletes the shared file from the segment’s bin subdirectory, and then
creates a symbolic link from /h/COE/Shared to the original location. This is done so
that the search path for finding shared files does not need to include any entry other than
/h/COE/Shared. Segments which have a dependency upon the shared file must identify
the segment which provides the shared file in the Requires segment descriptor.

Installation requires special care to ensure that a segment which provides a shared
library/DLL is not removed when there are segments still installed that require it. For this
reason, the installer maintains a usage counter for the shared file. When the segment which
“owns” it is installed, the count is set to 1. As segments which depend upon it are installed
or removed, the counter is incremented or decremented as appropriate. The installation
tools thus prevent the “owning” segment from being removed until the usage count
indicates there are no more dependent segments installed.

Shared libraries/DLLs require specific consideration within the COE.

• Segments must state dependencies on the segment providing the shared library/DLL,
not the actual file itself.

• One segment may not update a shared library/DLL “owned” by another segment. This

would otherwise contradict the fundament COE principle that objects (resources, files,
etc.) may be modified only by the segment which owns the object, or by the COE.

5.5.35 Validated

The COE requires strict adherence to integration and test procedures to ensure that a
fielded system will operate correctly. To facilitate integration and testing, the
VerifySeg tool creates the file Validated to confirm that a segment has been tested
for DII compliance. Subsequent tools in the development, integration, and installation

Segment Descriptors

DII COE I&RTS: Rev 3.0 January 1997 5-95

process use this file to determine whether a segment has been altered, thus indicating that
the segment needs to be revalidated.

The following information is captured:

• the version of VerifySeg used to validate the segment
• the date and time validation was performed
• who performed the validation
• a count of all errors and warnings produced by VerifySeg for the segment
• a checksum computed to enable detection of modifications made after the segment

was validated.

5.5.36 VERSION

The format of the VERSION descriptor is

version #:date[:time]

where version # is the version number for the segment, date is the version date (in
mm/dd/yyyy format), and time is an optional time stamp (in the format hh:mm). Version
numbers must adhere to the rules defined in Chapter 3.

Note: This release of the I&RTS extends the year from 2 digits to 4
digits to avoid complications when the year 2000 arrives.
VerifySeg will issue a warning for any segment that uses less
than 4 digits, but since this date is used for documentation
purposes only, there is no operational impact if only 2 digits are
used.

Segment Installation

5- January 1997 DII COE I&RTS: Rev 3.05-96

5.6 Segment Installation

Segment installation requires some form of electronic media (tape, CD-ROM, disk, etc.)
that contains the segments, and that has a table of contents which lists the available
segments. MakeInstall is the tool which creates such electronic media. However, it is
important to identify the operations (e.g., compression) performed on segments and the
sequence in which these operations are performed.

Installation requires reading the table of contents created by MakeInstall, selecting
the segments or Configuration Definitions to install, and then copying the segments to
disk. Segments may actively participate in the installation process through
PostInstall, PreInstall, and DEINSTALL scripts. This subsection details both
the MakeInstall tool and the installation sequence. At the end of this subsection,
detailed information on database creation and deinstallation is presented.

5.6.1 MakeInstall Flowchart

Figure 5-14 shows the sequence of operations performed by the MakeInstall tool.

1. MakeInstall is given a list of segments that are to be processed. For each
segment in the list:

a) If the segment is not already on disk, it is extracted from the repository and

placed in a temporary location.
b) A check is made to ensure that the segment is a valid segment.
c) If the segment is invalid, an error message is displayed. If the segment was

checked out of the repository and placed in a temporary location, the
temporary segment is deleted. MakeInstall then terminates.

2. If all segments are valid, a worklist is created. The worklist is sorted to ensure that

segments which have dependencies appear in the list after the segments they
depend upon. This ensures that at install time a tape will not have to be rewound
because of segment dependencies.

3. For all segments in the worklist:

a) Prepare the segment by executing the segment’s PreMakeInst
descriptor if it exists. PreMakeInst is prevented from modifying the
segment’s SegDescrip. Otherwise, PreMakeInst could invalidate the
segment validation step above.

b) Unless the segment specifies otherwise, all segment subdirectories except
SegDescrip are compressed.

c) The compressed segment and its descriptor directory are written out to the
specified electronic media.

d) If the segment was extracted from the repository and placed in a temporary
location, the temporary segment is deleted.

Segment Installation

DII COE I&RTS: Rev 3.0 January 1997 5-97

FT

Order
Worklist

Abort

Start

For All
Segs Requested

Extract
Segment

Valid
Seg?

F

T

StopFor All
Segs in Worklist

Prepare Seg

Compress Seg

Write out Seg

Delete
Seg?

Delete Seg

F

T

Stop

Abort

Delete Seg

Issue Error
Message

Delete
Seg?

Figure 5-14: MakeInstall Flowchart

Segment Installation

5- January 1997 DII COE I&RTS: Rev 3.05-98

5.6.2 Installation Flowchart

Figure 5-15 is a detailed flowchart for the segment installation process. The sequence of
PreInstall, PostInstall, and DEINSTALL executions is the most significant
aspect of the flowchart. Directives contained in the Direct descriptor may affect the
sequence (e.g., use of $REBOOT and $ROOT keywords), but such details are omitted for
clarity. The installation software automatically removes patches when a segment is
replaced and deletes any temporary space ($TEMPSPACE keyword) allocated for the
segment. These details are also omitted for clarity.

1. A load device is selected (tape, disk, etc.) and the table of contents created by
MakeInstall is read.

2. Segments found in the table of contents which do not match the target platform are

removed from consideration. Similarly, a check is made to ensure that an operator
cannot inadvertently load a segment for which he is not authorized. The
environment variables MACHINE_CPU and MACHINE_OS are set to indicate the
hardware platform.

3. The media may have Configuration Definitions defined. If they are defined:

a) The operator may select a Configuration Definition to load.
b) If a custom installation is desired, the operator is presented with the table

of contents in which all segments in the selected Configuration Definition
are highlighted. The operator may add or delete segments from this list.

c) If Configuration Definitions are not defined, the operator is shown the table
of contents and must manually select the desired segments.

4. For all segments selected, a check is made to see if the segment is loadable. To be

loadable, all dependent segments must either be selected or already on disk.
Conflicting segments must not be selected, nor may they already have been loaded
on disk.

5. For all segments selected:

a) The installation tools determine where to load the segment. The
environment variable INSTALL_DIR is set to the absolute pathname to
where the segment will be loaded. Segments can not assume that any
environment variables other than MACHINE_CPU, MACHINE_OS,
SYSTEM_ROOT (for NT only), INSTALL_DIR, and those set to refer to
disk space (COE_TMPSPACE, DISK1, etc.) are defined.

b) If an old version of the segment already exists on disk, the old segment’s
DEINSTALL script is run.

c) The new segment’s PreInstall script is loaded and executed. Note that
the new segment is not yet on disk.

Segment Installation

DII COE I&RTS: Rev 3.0 January 1997 5-99

d) The old segment is deinstalled by the installation tools. Modifications made
through the descriptor files are reversed.

e) The old segment is deleted from disk.
f) The new segment is loaded from tape onto disk and decompressed if

necessary.
g) The installation tools process commands from the new segment’s

descriptor files.
h) The new segment’s PostInstall script is run. PostInstall may

invoke runtime tools described in Appendix C (e.g., to prompt the user).
i) A status message is displayed indicating whether or not the segment was

successfully installed.

6. If any of the segments installed requested a reboot, the operator is notified and

asked for confirmation. If the operator confirms, the system is rebooted.

Segment Installation

5- January 1997 DII COE I&RTS: Rev 3.05-100

N

Y

YN

Y N Error
Handler

Start

A

Reduce list by
H/W & Security

Config
Defs?

Start

Select Load Device

Read TOC & SegDescrips

Select Config Def

Customize?

Auto Select Manual Select

For All
Segs Selected

Loadable?

Stop

Reboot
if

Requested

For All
Segs Selected

Run old DEINSTALL

A

Run new PreInstall

Deinstall old Segment

Delete old Segment

Copy new Segment to disk

Decompress new Segment

Install new Segment

Run new PostInstall

Display Status Report

Figure 5-15: Installation Flowchart

Segment Installation

DII COE I&RTS: Rev 3.0 January 1997 5-101

5.6.3 Database Installation and Removal

Within the overall installation and removal flowchart presented in Figure 5-15, there are
some special considerations with regards to handling SHADE databases. Database
installation is described first, then database deinstallation.

5.6.3.1 Database Installation

This subsection describes the installation process flow and how the database segment
components work together to install a data store on the COE database server.
PostInstall, automatically invoked by COEInstaller, drives the actual
installation and creation of the database and its storage by executing the scripts residing
under the install directory of a database segment. The flowchart in Figure 5-16 depicts the
process logic of a PostInstall file with regards to database segments.

N

Y

Set up Installation
Environment

Start

Stop

COEPromptPasswd

Is
DBMS

Running?
Start DBMS in

Maintenance Mode

Execute
Installation Script

COEStartDBServer

Figure 5-16: PostInstall Logic for DB Install

Segment Installation

5- January 1997 DII COE I&RTS: Rev 3.05-102

The DBMS should be operating in its maintenance mode (e.g. Oracle’s command
STARTUP DBA EXCLUSIVE) when a database segment or database patch segment is
installed. This prevents users from accessing data objects during their creation and
possibly corrupting either the segment or the database instance.

Table 5-6 shows, in broad outline, the sequence of steps performed by a database server
segment when it is creating the database. It uses Oracle and Sybase as examples. The first
three steps must be performed by a database account with DBA privileges. The owner
account (and there may be more than one) should be restricted so it can only create
objects in the data stores designated for its use. The remaining steps should be performed
by the owning account and should be done without DBA privileges. This ensures that data
objects are not inadvertently created in data stores belonging to other databases.

Function User Oracle SQL Command Sybase SQL Command

1. Allocate Storage DBA create tablespace ... datafile ... create database…

2. Create Owner DBA create user ...

3. Create Role(s) DBA create role ... create group …

4. Create Database Owner create schema create table …

5. Load Data Owner insert into table insert into table

6. Create Constraints Owner alter table … add constraint create constraint …

7. Grant Access Owner grant ... on table ... to role grant ... on table ... to group

8. Disconnect Owner DBA revoke CONNECT from ...

Table 5-6: Application Database Creation

1. Allocate Storage. This step is performed by the DBA and creates the physical storage
needed for the database. Developers shall not assume any particular disk configuration
when creating data files and shall create all files in the segment’s DBS_files
subdirectory. Developers may create multiple storage areas (e.g., Oracle tablespaces
or Sybase segments) to separate different groups of data objects. Developers shall not
modify the core database storage areas.

2. Create Database Owner. This step is performed by the DBA and creates the account

or accounts that will own the data objects. Their access will be limited to the storage
areas created by the segment and to public storage areas (e.g. Oracle tablespace TEMP
or USERS). Owners shall not have access to system storage areas (e.g. Oracle
tablespace SYSTEM). No permanent objects shall be created in public storage areas by
database segments. No objects shall be created in system storage areas. Owners shall
not have database administrator privileges.

Segment Installation

DII COE I&RTS: Rev 3.0 January 1997 5-103

3. Create Database Roles. This step is performed by the DBA and creates the database
roles necessary to manage user access. Developers should match the role definitions to
the access needed by applications. Developers should not grant privileges that allow
users to manipulate the data objects’ structure (e.g. Oracle’s Alter privilege). Users
should not be allowed to create their own indexes either.

4. Create Database. This step is performed by the Owner and creates tables, views,

indexes, constraints, sequences, and any other data objects that are part of the
database. If the developer has defined multiple owners, a separate script should be
provided for each one. No objects will be created that will be owned by the DBMS
default accounts (Oracle’s SYS or SYSTEM, Sybase’s sa) or by any other account
intended to be a DBA. Creation of constraints and indexes may be deferred to speed
the data load.

5. Load Data. This step is performed by the Owner and fills the data objects previously

created. Although index and constraint creation were defined as occurring in the
previous step, developers may defer them until the data load is complete to improve
performance.

6. Create Constraints. This step is performed by the Owner and creates any indexes,

constraints, triggers, or other objects that are part of the database but whose creation
was deferred until after the data load.

7. Assign Grants. This step is performed by the Owner and grants the appropriate

access permissions on data objects to the database roles previously defined. Grants
shall not be made directly to users accounts. Grants shall not be made to general
purpose users (e.g. Oracle’s PUBLIC user). Only the owner or the DBA are allowed
to administer grants. Other users will not be given permissions to further disseminate
grants.

8. Disconnect Owner. The last step – revoking database connection privileges from the

owner upon completion of the load process – is performed by the DBA. It ensures that
users cannot connect to the database as the owner of the data and thereby prevents
users from modifying schemas, indexes, or grants. Developers shall also require the
database administrators to change the password of the owner account upon
completion of the database creation.

The flowchart in Figure 5-17 depicts the processing logic of the install directory’s
scripts which drive the creation of the database objects. Each package install script
executes the database definition scripts that connect to the COE Database Server to create
database objects and perform other data definition functions.

The package install script executes database definition scripts that actually connect to
the COE DBMS Server to create the database objects and perform other data definition
functions.

Segment Installation

5- January 1997 DII COE I&RTS: Rev 3.05-104

Create Database

Load Data

Assign Grants

Report Error

Disconnect Owner

Check Existence
of DB Scripts

Create Data Storage

Create Database Roles

Create Database Owner

Missing
Script?

Executed by DBA

Executed by DBO

N

Y

Executed by DBA

Figure 5-17: Install Scripts Logic

5.6.3.2 Database Segment Deinstall

Deinstallation has a different flavor with databases. First, databases are dynamic. As users
make changes to their databases, sites’ data sets will diverge from each other. It is unlikely
that any two operational sites will have exactly the same data at any point in time. Second,
inter-database dependencies restrict the ability to remove segments in a modular way.

However, developers need to provide the capability to remove the application’s server
segment from the Database Server. This means removing the database and all traces of its
presence from within the DBMS and removing all files from the Database Server. The

Segment Installation

DII COE I&RTS: Rev 3.0 January 1997 5-105

following steps, at a minimum, must be accomplished. Note that the remove storage step
de-assigns the data files from the DBMS, it does not actually remove them from disk. The
last step, remove files, is executed from the operating system to delete the data files. Table
5-4 illustrates the logic required, using Oracle as an example.

Function User Oracle SQL Command

Remove roles DBA drop role ...

Remove objects owner drop schema ...

Remove storage DBA drop tablespace ...

Remove owner DBA drop user ...

Remove files DBA N/A (Use OS commands)

Table 5-7: Application Database Deinstall

Within the Oracle server, combining the removal of storage and of data objects by using
the Oracle command ‘drop tablespace x including contents’ is not recommended because it
tends to overload the DBMS’ rollback segments. Developers should use the ‘drop
schema’ command followed by a ‘drop tablespace’ command instead.

When DEINSTALL is being executed to support a segment upgrade or patch, the upgrade
or patch must support the deinstall/reinstall of data and supply the scripts to do so.

DEINSTALL scripts must be set up to fail nondestructively if other database segments are
dependent on the segment to be deinstalled. This can usually be accomplished using the
COE Tool COELstDBDepends.

Security Considerations

5- January 1997 DII COE I&RTS: Rev 3.05-106

5.7 Security Considerations

COE-based systems typically operate in a classified environment. Therefore, the COE and
the segment developer both must address security considerations. This section describes
the security implications from a runtime environment perspective. It does not address
procedural issues such as proper labeling of electronic media, requirements for maintaining
paper trails showing originating authority, etc.

Certain restrictions described below are a result of how the operating system manages file
versus directory permissions. The most specific permission (i.e., on a file) does not
consistently override the least specific permission (i.e., on the file’s parent directory).

This section is evolving as security policies are developed for COE-based systems and as
legacy systems migrate to the COE. Further guidance will be issued as appropriate. Refer
to the DII COE Chief Engineer for specific security concerns or for guidance in segment
development beyond the information contained here.

5.7.1 Segment Packaging

Segments shall not mix classification levels within the same segment. It is permissible to
create an aggregate that contains segments that are at different classification levels, but the
parent segment must dominate the security level of any child segments.

Features that are not releasable to foreign nationals shall be clearly identified through
documents submitted to the cognizant SSA when the segment is delivered. Software and
data that contain non-releasable features shall be constructed so that the features may be
removed as separate segments.

All classified data shall be constructed as separate segments. Developers shall submit
unclassified sample data to the SSA in a separate segment for the SSA to use during the
testing process.

5.7.2 Classification Identification

All segments shall identify the segment’s highest classification level in the Security
descriptor. Developers shall submit documentation to the SSA that clearly identifies what
features are classified and at what classification level.

5.7.3 Auditing

Segments that write audit information to the security audit log shall include the segment
prefix in the output. This is required so that audit information can be traced to a specific
segment.

Security Considerations

DII COE I&RTS: Rev 3.0 January 1997 5-107

5.7.4 Discretionary Access Controls

Developers shall construct their segments so that individual menu items and icons can be
profiled through use of COE profiling software. The profiling software allows a site
administrator to limit an individual operator’s access to segment functions by menu item
and by icon.

5.7.5 Command-Line Access

Segments shall not provide an xterm window or other access to a command-line unless the
Chief Engineer grants prior permission. Segment features should be designed and
implemented in such a way that operators are not required to directly enter operating
system commands. Situations requiring superuser (i.e., root) command-line access shall
require the operator to log in as a normal user then use the su command (for Unix) to
become a superuser. Superuser access by other means is not permitted unless the DII COE
Chief Engineer grants prior authorization. Permission will be granted only for COE-
component segments.

Segments that provide command-line access shall audit entry to and exit from the
command-line access mode. Entry to command-line access mode shall require execution
of the system login process so that the user is required to enter a password. For example,
the Unix command

xterm -exec login

will create an xterm window that requires the operator to provide a login account and
password.

Segments which require command-line access shall use the $CMDLINE keyword (and the
required $KEY keyword) in the Direct segment descriptor to document that the segment
provides command-line access. If the segment provides superuser privileges, the
$SUPERUSER keyword must also be stated in the Direct segment descriptor.

5.7.6 Privileged Processes

Segments shall minimize use of privileged processes (e.g., processes owned by root or
executed with an effective root user id). In all cases, privileged processes shall terminate
as soon as the task is completed. Privileged processes require prior Chief Engineer
approval.

(Unix) The names of the privileged processes must be listed in the Processes segment
descriptor with the $PRIVILEGED keyword. The $KEY keyword must also be used to
indicate that authorization has been granted by the Chief Engineer.

(Unix) Shell scripts that SUID or SGID to root are strictly forbidden.

Security Considerations

5- January 1997 DII COE I&RTS: Rev 3.05-108

5.7.7 Installation Considerations

Segments shall not require PostInstall, PreInstall, or DEINSTALL to run with
root privileges unless permission to do so is granted by the Chief Engineer.

Segments shall not alter the Unix umask setting established by the COE.

5.7.8 File Permissions

Segments shall satisfy at least one of the following two requirements:

1. The segment contains only subdirectories directly underneath the segment’s home
directory. All files are at least one level down from the segment’s home directory.

2. The segment has no directories or files that have the equivalent of the Unix 777 file

permissions.

This requirement is an attempt to provide a reasonable balance between security
requirements and migration of legacy systems. The main issue is that files and directories
should have read/write/execute permissions set for authorized, and only authorized, users.

Segments shall not place any temporary files in the directory pointed to by TMPDIR unless
deletion, alteration, or examination of such files by another segment or user poses no
security concerns.

5.7.9 Data Directories

Segments which contain data items with mixed permissions (e.g., some are read-only,
some are write only, some are read/write) shall be split into separate directories
underneath the segment’s data subdirectory (for reasons explained in section 5.7). File
permissions on the separate directories shall be set to prevent unauthorized access to data
files. No file shall be “world writeable” (i.e., writeable by any user) unless authorized by
the Chief Engineer.

Database Considerations

DII COE I&RTS: Rev 3.0 January 1997 5-109

5.8 Database Considerations

COE-based systems commonly make extensive use of databases. Database considerations
are therefore of paramount importance in properly architecting and building a system. This
section provides more detailed technical information on properly designing databases and
database applications.

5.8.1 Database Segmentation Principles

A COE database server is a COTS DBMS product. It is used in common by multiple
applications. It is a services segment and part of the COE. However, different sites need
varying combinations of applications and databases. As a result, databases associated with
applications cannot be included in the DBMS services segment. Instead, these component
databases are provided in a database segment established by the developer. The
applications themselves are in a software segment, also established by the developer, but
separate from the database segment. If the data fill for the database contains classified data
or is particularly large, that data fill must be in a separate data segment associated with the
database segment.

5.8.1.1 Database Segments

The DBMS is provided as one or more COTS segments. These segments contain the
DBMS executables, the core database configuration, database administration utilities,
DBMS network executables (both server and client), and development tools provided by
the DBMS vendor. Databases are provided as database segments. These segments contain
the executables and scripts to create a database and tools to load data into the database.

The following functional groupings are used to provide database services. The
configuration of COTS segments that provide them may vary depending on the DBMS
and the specific configuration chosen by DISA. The COTS segments will usually be
provided as a COTS DBMS server segment and a COTS DBMS client segment, installed
on the database server platform and on the client workstations, respectively. Specific
implementations of COTS DBMS segments are discussed in Appendix F.

1. DBMS Server. This functional group provides the DBMS executables, the DBMS’s
network services executables, and the core database. Its components are usually part
of the DBMS server segment.

2. DBMS Tools. This functional group provides the executables for other DBMS

applications (e.g. Oracle*Forms development tools). Its components are usually part
of the DBMS server segment.

3. DBMS DBA Tools. This functional group provides the executables for tools used by

database administrators (e.g. Oracle’s ServerManager). Its components are usually
part of the DBMS server segment, but may also be incorporated in the COTS DBMS
client segment.

Database Considerations

5- January 1997 DII COE I&RTS: Rev 3.05-110

4. DBMS Client Services. This functional group provides the client network services for
the DBMS and runtime executables for other DBMS applications (e.g.
Oracle*Forms 4.0 runform executable). Its components are installed on the
network’s application server and on individual workstations.

The following specific segments are prepared by developers to provide databases within a
COE-based system configuration.

1. Application Database Segment. This database segment contains a database
belonging to a component application. It is installed on the database server.

2. Application Client Segment. This software segment contains applications that access

a database created by an Application Database Segment. It is installed on the
network’s application server or on individual workstations.

3. Application Database Data Segment. This data segment contains the data fill of a

component database when that data fill must be separated from the Application
Database Segment. It is installed on the database server.

5.8.1.2 Database Segmentation Responsibilities

Three groups are involved in the implementation of database segments: DISA, the
application developers, and the sites’ database administrators. The developers and DISA
work together to field databases and associated services for the DBAs to maintain. DISA
provides the DBMS as part of the COE. Developers provide the component databases.
Sites manage access and maintain the data. Users interact with the databases through
mission applications and may, depending on the application, be responsible for the
modification and maintenance of data in the databases.

5.8.1.2.1 DISA

DISA provides the core database environment in which the applications’ segments will be
integrated. The basic functionality provided with that core environment gets the database
server ready for developers to add their databases and for the sites’ database
administrators to add and administer users.

The initial database contains the data dictionary, system workspace and recovery storage,
storage for the database component of any vendor tools, and an initial allocation of user
workspace and temporary storage. The application servers and client workstations are set
up with the DBMS client environment so that users need only execute the environment
shell script to be able to connect to the server. Finally, the initial operating system and
DBMS accounts are established on the database server for the sites’ database
administrators.

Database Considerations

DII COE I&RTS: Rev 3.0 January 1997 5-111

5.8.1.2.2 Developers

Developers are responsible for providing everything associated with their application’s
database. Developers must define the owner account(s) for their base data objects. They
must define and create the data objects within those owner accounts. Aside from the data
proper, developers must determine and define the access levels and privileges that must
exist for their segment’s database. Database roles must be used to implement the users’
access controls to ease the maintenance burden on the DBA.

• Developers may implement specific auditing within their applications and databases,
but shall not modify the system’s security audits.

• Developers shall provide scripts for the DBA’s use to add, modify and remove user

privileges.

5.8.1.2.3 Database Administrators

The System and Database Administrators at each site are responsible for creating,
modifying, and removing users’ DBMS and UNIX accounts using COE Tools. For
security and ease of management, a “unitary login” or single account name for each user
for both the operating system and the DBMS is being adopted for COE-based system.
This means that users cannot use DBMS accounts defined by developers and that
developers cannot assume the existence of any particular user accounts except for
accounts created by the developer to support DBMS services. It also means, as required
by the system Security Policy, that database actions can be traced to the individual user.
Security auditing is the responsibility of the sites’ DBAs. They are implemented as each
site needs using the audit features provided by the DBMS.

A DBA creates users’ DBMS accounts as part of the process of granting users access to
applications and their associated databases. COE Tools are used to accomplish this. In
order for these tools and the grants process to work properly and smoothly, the
developers must provide procedures, scripts, and instructions for the DBA’s use. Users’
access will change over time and few users will have access to all applications. The
developers’ procedures must support the addition of users and the revocation of users’
privileges. Since those privileges correspond to applications or sets of applications,
separate procedure scripts must be provided for each application or set. If an application
has multiple levels of privileges, then multiple procedures must be provided.

5.8.1.3 DBMS Tuning and Customization

The core DBMS instance is configured and tuned by DISA based on the combined
requirements of all developers’ databases taken together. Developers provide these
requirements during Segment Registration. This allows the DBMS Server segments to be
reasonably independent of particular hardware configurations and ignorant of specific
application sets. It is not tuned or optimized beyond that.

Database Considerations

5- January 1997 DII COE I&RTS: Rev 3.05-112

The final tuning of the DBMS cannot be accomplished until a complete configuration is
built and it has an operational load. Developers should provide information into the tuning
process, but should not make their applications dependent on particular tuning parameters.
Where a non-standard parameter is required for operations, developers must provide that
information to DISA so the DBMS services segment can be modified accordingly.

The developers need to communicate any design assumptions and DBMS configuration
requirements that must be incorporated in the DBMS set-up. If, for example, developers
need any settings in the Oracle initDII.ora file that are not the default settings for the
current DBMS version, that information needs to be provided to the Chief Engineer early
in the integration process for a particular release. Based on the impact of the change,
DISA can decide whether to modify the baseline server configuration or to develop a COE
DBMS patch segment to accompany the application’s database segment and modify the
in-place database instance.

Similarly, sizing of system recovery logs, log archiving directories, and users temporary
workspace is based on the combination of the requirements of the various applications that
use DBMS services. Developers must communicate their minimum requirements for these
so that the core DBMS is not set to be too small. Most of the application tools provided
by DBMS vendors are incorporated in the DBMS segment in the functional category of
Server Tools. To ensure that needed tools are available, developers should advise the
Chief Engineer what COTS tools they intend to use when registering the segment. When
such tools are used, the developer must identify the dependency under the database
application segment’s Requires descriptor.

• Developers shall not modify the core DBMS instance’s configuration. Extensions or
modifications of that configuration require the specific approval of the DII COE Chief
Engineer and will be implemented by DISA in the COTS DBMS segment.

• If developers modify any of the executable tools (e.g. add User Exits to
Oracle*Forms), then the modified version of the tool does not reside with the core
database services, but becomes a part of the application’s client segment. This
prevents conflicts among different modified versions of a core function. The
maintenance of that modified tool also becomes the responsibility of the developers.

5.8.2 Database Inter-Segment Dependencies

A key objective of the segmentation approach is to limit the interdependencies among
segments. Ideally, database segments should not create data objects in any other schema
or own data objects that are dependent on other schemas. However, one purpose in
having a Database Server is to limit data redundancy and provide common shared data
sets. This means that there will usually be some dependencies among the databases in the
federation. This section addresses the management of such dependencies.

The following principles apply when inter-database dependencies exist:

Database Considerations

DII COE I&RTS: Rev 3.0 January 1997 5-113

• The database schema within a segment that will own the parent object will create that
object.

• The database schema within a segment that will own the child (dependent) object will
create that object.

• Database schemas with inter-database dependencies will strive to keep those
dependencies in segments separate from the non-dependent portions of the schema.

• The referencing object, not the one that is referenced, owns referential dependencies
(e.g. foreign keys). If the only dependencies are referential, separate segments are not
needed.

• Schemas retain their autonomy. The developer of a dependency (including referential
dependencies) is responsible for maintaining that dependency should other developers
change their database schemas.

The following are general requirements for database segments.

• Database Segments shall not make modifications to another segment’s database. If a
schema needs to create data objects in some schema belonging to another segment,
those objects will be placed in a Database Segment that modifies the segment that
owns those objects. Developers shall not create indexes on another segment’s tables
because of the performance problems they can cause.

• Developers will not modify the schema of another segment’s database. If changes to

table or column definitions are needed, they must be effected by the developer of the
database.

• When dependencies exist they will be documented under the Requires descriptor of

the SegInfo file. Object dependencies will be document under the Database
descriptor of the SegInfo file.

The following example illustrates (see Figure 5-18) how dependencies are to be created
and managed. The developers of database B need to attach a trigger to a table in database
A. This trigger will feed data from A to B every time that table is modified. Rather than
include the trigger as part of B’s Database Segment, it is put into a separate Database
Segment C, that modifies Database Segment A. C, the inter-database segment, is
dependent on the prior installation of both database segments and is so labeled under its
Requires descriptor. The table is listed in the $MODIFIES section of the Database
descriptor.

Database Considerations

5- January 1997 DII COE I&RTS: Rev 3.05-114

Database Segment A
created by

Developer A

Database Segment C
created by

Developer B
(dependent on A and B)

Database Segment B
created by

Developer B

Segment dependencies are listed in the Requires descriptor
Object dependencies are listed in the Database descriptor

Figure 5-18: Inter-Database Dependencies

5.8.3 Loading Data into Database Segments

After the objects belonging to a Database Segment have been created in PostInstall,
they may need to be populated. Other objects, those containing dynamic data, may be
initially empty. Where needed, a database segment can perform initial data fill in the Load
Data phase of the PostInstall. Several methods are discussed below that can be used
to accomplish data loads. Method selection should be based on the amount of data to be
loaded.

If a small number of records are to be loaded into a table, the load can be accomplished
with insert statements embedded in an SQL command script. The following excerpt is an
example for loading data into Oracle.

Database Considerations

DII COE I&RTS: Rev 3.0 January 1997 5-115

sqlplus -silent DBSORT/${DBO_PWD} <<eof
INSERT INTO SORTSM_BIDES (UIC, SECUR, TIME,SCLAS)

VALUES (‘N00001’,’U’,sysdate,’U’);
INSERT INTO SORTSM_BIDES (UIC, SECUR, TIME,SCLAS)

VALUES (‘N00002’,’U’,sysdate,’U’);
INSERT INTO SORTSM_BIDES (UIC, SECUR, TIME,SCLAS)

VALUES (‘N00003’,’U’,sysdate,’U’);
eof
;;

If a large amount of data is to be loaded into a database table, the use of a data loading
utility furnished by the RDBMS is usually more efficient. In this case, the utility can be
invoked from the LOAD_DATA section of the database definition script. Examples of
these data loading utilities are Oracle SQL*Loader, Informix dbload, Oracle or Informix
Import, and Sybase bcp. These utilities require that the data to be loaded be stored in a file
with a specific format.

Files used for data fill belong in the data subdirectory of the database segment. The data
directory within the segment can also be used as a ‘mount point’ for CD-ROM, tape drive,
or other bulk storage devices. This is the preferred approach for large data loads. It allows
the segment to be filled without occupying disk space during the data fill.

The security classification of the data to be loaded must be considered during the
implementation of a database segment. When a classified data fill is part of the database
segment, the entire segment becomes classified at the same level as the data. Therefore,
developers must separate the data fill from the database segment when the database
schema is not classified, but the contents are. The intent here is to keep database segments
unclassified as much as possible so schemas can be reused. The security classification of a
DII COE system (e.g. GCSS) is a separate issue and is addressed in the security policy of
that system’s program office.

If a separate data segment is provided to accompany a database segment, that data
segment must have a DEINSTALL capability. This frees storage after the data fill is
complete.

It can take a long time to fill a large database. Developers should indicate the approximate
load time in their ReleaseNotes. The data load time can be reduced by loading the
data before creating the database constraints and indexes. This should only be done with
clean data that has been tested against the database constraints.

Extending the COE

5- January 1997 DII COE I&RTS: Rev 3.05-116

5.9 Extending the COE

Most properly designed segments will not require any extensions to the COE, except for
the need to add icons and menu items. This subsection describes some of the more
commonly required extensions, and techniques for addressing less frequently encountered
extensions.

5.9.1 Adding Menu Items to the Desktop

Adding menu items is usually required only when installing a software segment. Two
pieces of information are required: the name of the affected account group(s) and the
menu items to add. Refer to the SegName and Menus descriptors.

The installation software appends the contents of the segment’s menu files to the
corresponding menu files in the affected account group(s). This forms a master template in
the affected account group’s data/Menus subdirectory that is subsequently used to
create operator profiles. Segments should use the APPEND directive in the menu files to
add items. Refer to the Executive Manager Programmer’s Guide in the Developer’s
Toolkit documentation for the format of menu files.

Previous COE releases included a system menu bar that was displayed at the top of the
screen, just below a security banner. The COE no longer automatically provides a system
menu bar. Segments that require a system menu bar must use the Executive Manager APIs
to explicitly add menu items when the application initializes. Developers may only add
menu items that are contained within the current user’s profile. The APIs are constructed
to prevent addition of menu items to the system menu bar that are not contained in the
current user profile.

Segments that use a system menu bar must also use the APIs to remove their system menu
bar additions when the application terminates. Refer to the Style Guide for guidance on
when it is appropriate to use a system menu bar versus desktop icons.

5.9.2 Adding Icons to the Desktop

As with menus, adding icons is usually required only for software segments. Two pieces of
information are required: the name of the affected account group and the icons to add.
Refer to the SegName and Icons descriptors above.

The installation software appends the contents of the segment’s icon files to a master list
located with affected account group(s). This forms a master template in the affected
account group’s data/Icons subdirectory that is subsequently used to create operator
profiles. Refer to the Executive Manager API documentation for the format of icon files.

Refer to the Style Guide for guidance on when it is appropriate to use a system menu bar
versus desktop icons.

Extending the COE

DII COE I&RTS: Rev 3.0 January 1997 5-117

5.9.3 Modifying Window Behavior (Unix)

The Style Guide defines required window behavior for all segments. X Windows controls
window behavior through a collection of resource definitions. The resource definitions
consulted are as follows (if they exist):

1. Files located in the directory /usr/lib/X11/app-defaults .
2. Files in the directory pointed to by XAPPLRESDIR.
3. Resources inherited from the display’s root window.
4. The file $HOME/.Xdefaults .
5. The file pointed to by XENVIRONMENT.

X Windows processes the controls in the order shown, and in such a way that the last
control specified overrides any preceding controls.

The COE must carefully control resources to avoid conflicts between segments.
Therefore, segments shall not place files in directories “owned” by X Windows (e.g.,
/usr/lib/X11/app-defaults .) Instead, segments shall place their resources in the
subdirectory data/app-defaults underneath the segment directory as shown in
Figure 5-2. At install time, the installation tools create a symbolic link underneath
$DATA_DIR/app-defaults to each of the files contained in the segment. For this
reason, segments must use their segment prefix to name all app-defaults used in this
manner.

Figure 5-2 also shows that segments may place additional fonts underneath the segment’s
data/fonts subdirectory. At install time, the installation tools create a symbolic link
underneath $DATA_DIR/fonts to point to each of these files. Segments shall use their
segment prefix to name font files used in this way.

The COE establishes the setting for environment variables XFONTSDIR,
XAPPLRESDIR, and XENVIRONMENT. Segments shall not modify their value. They are
set as defined in subsection 5.3.

Motif follows a similar strategy for setting resources. The COE uses the Motif software
provided with the Common Desktop Environment (CDE) software. Refer to the
Developer’s Toolkit documentation for more details on how Motif operates within the
CDE environment.

Segments may not place files in any directory “owned” by Motif (e.g.,
/usr/lib/X11/app-defaults/Mwm) or CDE, nor may segments alter the account
group’s .mwmrc resource file, if it exists.

To summarize, for DII compliance:

• Segments shall not modify vendor distributed X Windows, Motif, or CDE system
resources (Xdefaults, rgb.txt, etc.).

Extending the COE

5- January 1997 DII COE I&RTS: Rev 3.05-118

• Segments shall not place files in the X, Motif, or CDE distribution directories (e.g.,

/usr/lib/X11/app-defaults).

• Segments shall use the segment prefix to uniquely name files underneath the segment’s

data/fonts and data/app-defaults subdirectories.

• Segments shall not modify the COE established setting for XAPPLRESDIR,

XENVIRONMENT, or XFONTSDIR.

• Segments shall not modify the affected account group’s .mwmrc file, if one exists.

5.9.4 Using Environment Extension Files (Unix)

The ReqrdScripts descriptor allows extensions to the affected account group’s “dot”
files (.cshrc, .login, etc.). This is most frequently done to add environment variables.
However, unregulated use of environment variables is detrimental to the system. The
amount of space the operating system reserves for environment variables is limited and
loading a large number of segments could quickly exhaust this scare resource. Each time a
process is spawned, the child process inherits environment variables from the parent.
Resolving a large number of environment variables can take a significant amount of time
and hence degrade system performance.

DII compliance requires adherence to the following guidelines:

• Do not include development environment variables in runtime environment scripts or
extension files.

• Use “short names” for environment variables. Unix stores environment variable names

as character strings in the environment space, so the longer the variable name, the
faster environment variable space is exhausted.

• Reuse environment variables already defined by the COE or affected account group.

• When feasible and efficient, use operating system services (such as pipes and streams)

or data files to communicate with other segments, or between components within the
same segment.

• Do not use environment variables to communicate control data between components

within the same segment. Use operating system services or data files.

• Do not define environment variables that can be derived from other environment

variables. For example, to define MYSEG_BIN through

Extending the COE

DII COE I&RTS: Rev 3.0 January 1997 5-119

 setenv MYSEG_HOME /h/MySeg
 setenv MYSEG_BIN $MYSEG_HOME/bin

 wastes environment variable space. The COE guarantees a predictable directory

structure, so $MYSEG_HOME/bin can be used directly instead of $MYSEG_BIN.

• When feasible, have segment components create environment variables once they

begin executing through putenv or through “sourcing” a file containing needed
environment variables. This approach ensures that segment-specific environment
variables are inherited locally by a single segment, not globally by all segments.

5.9.5 Using Community Files

Community files are any files that reside outside a segment’s assigned directory. (Data
files owned by the segment underneath /h/data are considered an exception.) Most
required community file modifications are handled automatically by the installation
software through descriptor directory files. The Community descriptor is used when the
installation software cannot provide the modifications required.

All community file modifications are carefully scrutinized at integration time because of
the potential for conflict with other segments or the runtime environment. Developers
should seek guidance from the Chief Engineer before modifying any COTS community
files (those owned by Unix, X Windows, Motif, Oracle, Sybase, etc.).

5.9.6 Defining Background Processes

When an operator logs in, the operating system uses various files to establish a runtime
environment context. Segments use the Processes descriptor file to add other
background processes to the runtime environment.

The COE differentiates between nine different types of processes:

Boot Processes launched each time the computer is booted or rebooted.
Designate boot processes with the $BOOT keyword.

DCE Boot DCE processes launched each time the computer is booted or
rebooted. Designate DCE boot processes with the $DCEBOOT
keyword in the DCEDescrip descriptor.

DCE Demand DCE processes launched on demand by dced. Designate such
processes with the $DCEDEMAND keyword in the DCEDescrip
segment descriptor.

RunOnce Processes launched the next time the computer is rebooted. These
are “one-shot” processes and are only run the next time the

Extending the COE

5- January 1997 DII COE I&RTS: Rev 3.05-120

computer is rebooted, but not for reboots thereafter. Designate
RunOnce processes with the $RUN_ONCE keyword.

Periodic Processes launched at boot time that run periodically at specified
intervals (e.g., 6 hrs, 24 hrs). These processes are equivalent to
Unix cron process. Use the $PERIODIC keyword to indicate
these types of processes.

Privileged Processes that require “superuser” privileges to execute. Use the
$PRIVILEGED keyword to indicate these type of processes.

Background Processes launched the first time an operator logs in after a reboot;
these processes remain active in the background even after the
operator logs out. Designate background process with the
$BACKGROUND keyword.

Session Processes launched when an operator logs in and remaining active
only while the operator is logged in. Designate session processes
with the $SESSION keyword.

Transient Processes launched in response to operator selections from an icon
or menu. Transient processes typically display a window on the
screen, perform some specific function in response to operator
actions, and then terminate. In some cases, the processes spawned
may stay active for the length of the session, but in all cases, the
Executive Manager terminates transient processes when the
operator logs out. Designate transient processes through the
Menus and Icons descriptors.

Note: Because of the potential impact to other segments, system
performance, and system integrity, all processes except DCE
Demand, Session, and Transient processes require prior approval
by the Chief Engineer. Boot, DCE Boot, privileged, and periodic
processes are strongly discouraged.

5.9.7 Reserving Disk Space

Segments frequently require additional disk space to accommodate growth over time as
the system operates. For example, communications logs are empty when the system is
initially installed, but will occupy space as messages are received and logged. Segments
may reserve additional disk space through the Hardware descriptor.

The installation software keeps track of how much disk space is actually in use and how
much is reserved. A segment will not be installed if the amount of space it occupies, plus
any space it reserves, exceeds the amount of unreserved disk space. The installation
software allows the operator to select how full the disk can be (80, 85, 90, or 95% of

Extending the COE

DII COE I&RTS: Rev 3.0 January 1997 5-121

capacity). These safeguards are in place to avoid filling up the disk, but segments are
responsible for detecting when the amount of space requested is not available.

In rare situations, segments may require space on multiple disk partitions. See the
$PARTITIONS keyword for the Hardware descriptor.

5.9.8 Using Temporary Disk Space

Segments may require temporary disk space during segment installation and during system
operation. The COE provides techniques for accommodating both uses for temporary
space.

Temporary disk space may be requested during segment installation through the
$TEMPSPACE keyword in the Hardware descriptor. The installation software sets the
COE_TMPSPACE environment variable to point to the location where temporary space is
allocated. This environment variable is defined only during segment installation. The
installation software automatically deletes all files in this temporary area when segment
installation is completed.

The environment variable TMPDIR points to a temporary directory that may be used
during system operation. However, there is a limited amount of disk space set aside for
temporary storage so it must be used sparingly. A better approach is for segments to store
temporary data in their own data subdirectory.

Segments that use TMPDIR must delete temporary files when they are no longer required.
For Unix systems, all files in this directory are automatically deleted when the system is
rebooted. This is not true for NT platforms. All segments, as a matter of good
programming practices, should delete temporary files when they are no longer needed.

5.9.9 Defining Sockets

Requests to modify the /etc/services file to add sockets is done through the
COEServices descriptor file. This control point for requests to add socket names and
ports helps avoid conflicts between segments. Port numbers in the range 2000-2999 are
reserved for COE segments. Segments should avoid creating sockets with port numbers
less than 1000 since these are generally reserved for operating system usage.

Miscellaneous Topics

5- January 1997 DII COE I&RTS: Rev 3.05-122

5.10 Miscellaneous Topics

This subsection discusses a variety of miscellaneous topics that are related to
segmentation, use of the DII COE, etc.

5.10.1 Color Table Usage

The COE must carefully control how the color table is used to avoid objectionable “false
color” patterns that may appear when mouse focus changes from one window to another.
The Style Guide gives guidance on what colors to use from a human factors perspective,
but it does not provide guidance on how segments are to coordinate such usage through
the COE.

This document will be expanded to include guidance for color table usage as the impact of
COTS products and legacy applications is evaluated.

5.10.2 Shared Libraries

The COE strongly encourages the use of shared libraries to reduce memory requirements.
Developers may create shared libraries (DLLs for NT platforms) through use of the
SharedFile segment descriptor.

(Unix) Developers should also link to X and Motif shared libraries to reduce memory
requirements. The Motif libraries provided by CDE should be used instead of the libraries
provided by Motif or some other source. This alleviates the need to maintain Motif shared
libraries used both by the desktop (e.g., CDE) and other applications.

5.10.3 Adding Network Host Table Entries

Workstation IP addresses and hostnames are site-dependent. Hostnames in particular are
most often selected by the site and usually cannot be predicted in advance. Therefore,
segments shall not include any assumptions about a workstation having a specific name or
following any particular naming convention, nor make any assumptions about a specific IP
address class.

Segments should rarely need to add entries to the network host table. An operator usually
establishes such entries through system administration functions. For those situations
where a segment must do so, the $HOSTS keyword in the Network descriptor allows IP
addresses, hostnames, and aliases to be added to the network host table. The address may
be added to either the local host table, or to the DNS/NIS/NIS+ maintained host table.

Prior permission must be given by the DII COE Chief Engineer to use the $HOSTS
keyword, and permission will be granted only for COE-component segments.
VerifySeg will issue a warning for any segment which uses the $HOSTS keyword, and
a warning if the segment does not include the $KEY keyword. A future release will issue
an error if the segment does not provide a valid authorization key.

Miscellaneous Topics

DII COE I&RTS: Rev 3.0 January 1997 5-123

5.10.4 Registering Servers

Servers are registered with the COE through the $SERVERS keyword in the Network
descriptor. Only COE-component segments may register servers. Prior permission must be
given by the DII COE Chief Engineer to use the $SERVERS keyword. VerifySeg will
issue a warning for any segment which uses the $SERVERS keyword and strictly fail the
segment if it is not a COE-component segment.

A segment that needs to determine the location of a server may use the
COEFindServer function (see Appendix C).

5.10.5 Adding and Deleting User Accounts

Segments are not normally allowed to create operator accounts (e.g., Unix user login
accounts). Segments may create system accounts, through the COEServices descriptor,
for the purpose of establishing file ownership. Operator accounts are normally added to
the system through use of the Security Administrator application. They are customizable
by security classification level, by access permissions granted or denied against application
objects, and by granting or denying access to menu or icon items. The segment descriptors
AcctGroup, Security, Permissions, Menus, and Icons provide these controls.

Figure 5-3 shows that operator accounts may be global or local. This attribute is specified
when the operator account is created. If the server that contains operator accounts is
down, global operator logins will be unavailable until the server is restored.

Profiles may also be global or local. This attribute is determined when the profile is
created. If a global profile is not available at login time (e.g., the server is down), login
proceeds but the operator is notified of the problem and the system is placed in a safe
state.

Some segments require the ability to perform additional operations when a user account is
created, or to perform cleanup operations when a user account is deleted. This is done by
using the $ACCTADD and $ACCTDEL keywords in the Direct descriptor. Moreover,
the $PROFADD, $PROFDEL, and $PROFSWITCH can be used to perform segment-
dependent operations when user profiles are created or deleted, or when a user switches
from one profile to another. Due to security implications, these keywords require prior
permission from the Chief Engineer and use of the $KEY keyword.

5.10.6 Character-Based Applications

Support for character-based interfaces is provided through the CharIF account group.
An account is established for individual users through the same process as all other
accounts, but the account is identified as a character-based interface account only.
Operator profiles may be set up, but only those segments that support a character-based
interface (see the Direct descriptor) are accessible.

Miscellaneous Topics

5- January 1997 DII COE I&RTS: Rev 3.05-124

The remote user connects to the designated server through a remote login session. Once
connected, the user is prompted for a login account and password. A menu of options,
such as

0) Exit
1) AdHoc Query
2) TPFDD Edit

Enter Option:

is presented to the user. The option selected is executed and results are displayed on the
user’s remote, character-based display.

5.10.7 License Management

The COE contains a license manager to administer COTS licenses. Vendors take a variety
of approaches in how they control and administer licenses. For this reason, the techniques
for automating license management are still under development and are being handled
manually. Refer to the DII COE Chief Engineer for further assistance in creating a
segment that requires a license manager.

5.10.8 Remote versus Local Segment Execution

Segments which are remotely launchable are designated by the $REMOTE keyword in the
Direct descriptor. This feature is not currently implemented, but is reserved for future
implementation. Developers are encouraged to use the $REMOTE keyword and design
their segments to account for local versus remote execution. Thus, when this feature is
fully implemented, developer segments will be positioned to take advantage of the
capability.

5.10.9 Modifying Network Configuration Files

Setting up a network requires modification of several network configuration files to set
netmasks, identify subnets and routers, etc. Proper network configuration is essential for
proper system operation and performance. For this reason, only COE-component
segments may establish network configuration parameters. This is accomplished through
the Network descriptor file.

Prior approval from the DII COE Chief Engineer is required. VerifySeg will issue a
warning for any segment that uses the Network descriptor and strictly fail the segment if
it is not a COE-component segment. Note that the $KEY keyword must also be specified
to give a valid authorization key.

5.10.10 Establishing NFS Mount Points

NFS mount points are defined through the $MOUNT keyword in the Network descriptor.
Establishing mounted file systems can seriously degrade system performance. Poor design

Miscellaneous Topics

DII COE I&RTS: Rev 3.0 January 1997 5-125

choices that result in several different mount points can create single points of failure, or
result in sequencing problems when the system is loaded or rebooted. For these reasons
mount points are restricted to COE-component segments.

Prior approval from the DII COE Chief Engineer is required to create NFS-mounted file
systems. VerifySeg will issue a warning for any segment which uses the $MOUNT
keyword and will strictly fail the segment if it is not a COE-component segment. Note that
the $KEY keyword is required.

Miscellaneous Topics

5- January 1997 DII COE I&RTS: Rev 3.05-126

This page is intentionally blank.

